ترغب بنشر مسار تعليمي؟ اضغط هنا

Clarifying the nature of the brightest submillimetre sources: interferometric imaging of LH850.02

42   0   0.0 ( 0 )
 نشر من قبل Joshua Younger
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present high-resolution interferometric imaging of LH850.02, the brightest 850- and 1200-micron submillimetre (submm) galaxy in the Lockman Hole. Our observations were made at 890 micron with the Submillimetre Array (SMA). Our high-resolution submm imaging detects LH850.02 at >6-sigma as a single compact (size < 1 arcsec or < 8 kpc) point source and yields its absolute position to ~0.2-arcsec accuracy. LH850.02 has two alternative radio counterparts within the SCUBA beam (LH850.02N & S), both of which are statistically very unlikely to be so close to the SCUBA source position by chance. However, the precise astrometry from the SMA shows that the submm emission arises entirely from LH850.02N, and is not associated with LH850.02S (by far the brighter of the two alternative identifications at 24-micron). Fits to the optical-infrared multi-colour photometry of LH850.02N & S indicate that both lie at z~3.3, and are therefore likely to be physically associated. At these redshifts, the 24 micron--to--submm flux density ratios suggest that LH850.02N has an Arp220-type starburst-dominated far-IR SED, while LH850.02S is more similar to Mrk231, with less dust-enshrouded star-formation activity, but a significant contribution at 24-micron (rest-frame ~5-6 micron) from an active nucleus. This complex mix of star-formation and AGN activity in multi-component sources may be common in the high redshift ultraluminous galaxy population, and highlights the need for precise astrometry from high resolution interferometric imaging for a more complete understanding.

قيم البحث

اقرأ أيضاً

We study the environment of 23 submillimetre galaxies (SMGs) drawn from the JCMT/AzTEC 1.1mm S/N-limited sample in the COSMOS field, as well as 4 COSMOS SMGs at z_spec>4.5, and 1 at z_spec=2.49, yielding a sample of 28 SMGs. We search for overdensiti es using the COSMOS photometric redshifts based on over 30 UV-NIR photometric bands, reaching an accuracy of sigma(Delta z/(1+z))=0.0067 (0.0155) at z<3.5 (>3.5). To identify overdensities we apply the Voronoi tessellation analysis, and estimate the overdensity estimator delta_g as a function of distance from the SMG and/or overdensity center. We test and validate our approach via simulations, X-ray detected groups, and spectroscopic verifications using VUDS and zCOSMOS catalogues showing that even with photometric redshifts in COSMOS we can efficiently retrieve overdensities out to z~5. Our results yield that 11/23 (48%) JCMT/AzTEC 1.1mm SMGs occupy overdense environments. Considering the entire JCMT/AzTEC 1.1mm S/N>4 sample, and accounting for the expected fraction of spurious detections, yields that 35-61% of the SMGs in the S/N-limited sample occupy overdense environments. We perform an X-ray stacking analysis in the 0.5-2keV band using a 32 aperture and our SMG positions, and find statistically significant detections. For our z<2 [z>2] subsample we find an average flux of (4.0+/-0.8)x10^{-16} [(1.3+/-0.5)x10^{-16}] erg/s/cm^2 and a corresponding total mass of M_200 = 2.8x10^{13} [2x10^{13}] MSol. Our results suggest a higher occurrence of SMGs occupying overdense environments at z>3, than at z<3. This may be understood if highly star forming galaxies can only be formed in the highest peaks of the density field tracing the most massive dark matter haloes at early cosmic epochs, while at later times cosmic structure may have matured sufficiently that more modest overdensities correspond to sufficiently massive haloes to form SMGs.
We have used the Submillimeter Array at 860$,mu$m to observe the brightest SCUBA-2 sources in 4$,$deg$^{2}$ of the Cosmology Legacy Survey. We have targeted 75 of the brightest single-dish SCUBA-2 850$,mu$m sources down to $S_{850},{approx},8,$mJy, a chieving an average synthesized beam of 2.4$^{primeprime}$ and an average rms of $sigma_{860},{=},1.5,$mJy in our primary beam-corrected maps. We searched our maps for $4sigma$ peaks, corresponding to $S_{860},{gtrsim},6,$mJy sources, and detected 59 single galaxies and three pairs of galaxies. We include in our study 28 archival observations, bringing our sample size to 103 bright single-dish submillimetre sources with interferometric follow-up. We compute the cumulative and differential number counts of our sample, finding them to overlap with previous single-dish survey number counts within the uncertainties, although our cumulative number count is systematically lower than the parent SCUBA-2 cumulative number count by $24,{pm},6$ per cent between 11 and 15$,$mJy. We estimate the probability that a ${gtrsim},10,$mJy single-dish submillimetre source resolves into two or more galaxies with similar flux densities, causing a significant change in the number counts, to be about 15 per cent. Assuming the remaining 85 per cent of the targets are ultra-luminous starburst galaxies between $z,{=},2$-3, we find a likely volume density of ${gtrsim},400,$M$_{odot},$yr$^{-1}$ sources to be ${sim},3^{+0.7}_{-0.6},{times},10^{-7},$Mpc$^{-3}$. We show that the descendants of these galaxies could be ${gtrsim},4,{times},10^{11},$M$_{odot}$ local quiescent galaxies, and that about 10 per cent of their total stellar mass would have formed during these short bursts of star-formation.
277 - Y.D. Mayya 2013
We analyse the photometric, chemical, star formation history and structural properties of the brightest globular cluster (GC) in M81, referred as GC1 in this work, with the intention of establishing its nature and origin. We find that it is a metal-r ich ([Fe/H]=-0.60+/-0.10), alpha-enhanced ([Alpha/Fe]=0.20+/0.05), core-collapsed (core radius r_c=1.2 pc, tidal radius r_t = 76r_c), old (>13 Gyr) cluster. It has an ultraviolet excess equivalent of ~2500 blue horizontal branch stars. It is detected in X-rays indicative of the presence of low-mass binaries. With a mass of 10 million solar masses, the cluster is comparable in mass to M31-G1 and is four times more massive than Omega Cen. The values of r_c, absolute magnitude and mean surface brightness of GC1 suggest that it could be, like massive GCs in other giant galaxies, the left-over nucleus of a dissolved dwarf galaxy.
78 - Sean Farrell 2010
The small subset of hyper-luminous X-ray sources with luminosities in excess of ~1E41 erg/s are hard to explain without the presence of an intermediate mass black hole, as significantly super-Eddington accretion and/or very small beaming angles are r equired. The recent discovery of HLX-1, the most luminous object in this class with a record breaking luminosity of ~1E42 erg/s in the galaxy ESO 243-49, therefore currently provides some of the strongest evidence for the existence of intermediate mass black holes. HLX-1 is almost an order of magnitude brighter than the other hyper-luminous sources, and appears to exhibit X-ray spectral and flux variability similar to Galactic stellar mass black hole X-ray binaries. In this paper we review the current state of knowledge on this intriguing source and outline the results of multi-wavelength studies from radio to ultra-violet wavelengths, including imaging and spectroscopy of the recently identified optical counterpart obtained with the Very Large Telescope. These results continue to support an intermediate mass black hole in excess of 500 Msun
312 - Yen-Ting Lin 2009
A novel statistic is proposed to examine the hypothesis that all cluster galaxies are drawn from the same luminosity distribution (LD). In such a statistical model of galaxy LD, the brightest cluster galaxies (BCGs) are simply the statistical extreme of the galaxy population. Using a large sample of nearby clusters, we show that BCGs in high luminosity clusters (e.g., L_tot > 4x10^11 L_sun) are unlikely (probability <3x10^-4) to be drawn from the LD defined by all red cluster galaxies more luminous than M_r=-20. On the other hand, BCGs in less luminous clusters are consistent with being the statistical extreme. Applying our method to the second brightest galaxies, we show that they are consistent with being the statistical extreme, which implies that the BCGs are also distinct from non-BCG luminous, red, cluster galaxies. We point out some issues with the interpretation of the classical tests proposed by Tremaine & Richstone (1977) that are designed to examine the statistical nature of BCGs, investigate the robustness of both our statistical test and those of TR against difficulties in photometry of galaxies of large angular size, and discuss the implication of our findings on surveys that use the luminous red galaxies to measure the baryon acoustic oscillation features in the galaxy power spectrum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا