ترغب بنشر مسار تعليمي؟ اضغط هنا

Spitzer Uncovers Active Galactic Nuclei Missed by Optical Surveys in 7 Late-type Galaxies

46   0   0.0 ( 0 )
 نشر من قبل Rachel Dudik Ms.
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery using Spitzers high resolution spectrograph of 7 Active Galactic Nuclei (AGN) in a sample of 32 late-type galaxies that show no definitive signatures of AGN in their optical spectra. Our observations suggest that the AGN detection rate in late-type galaxies is possibly 4 times larger than what optical spectroscopic observations alone suggest. We demonstrate using photoionization models with an input AGN and an extreme EUV-bright starburst ionizing radiation field that the observed mid-infrared line ratios cannot be replicated unless an AGN contribution, in some cases as little as 10% of the total galaxy luminosity, is included. These models show that when the fraction of the total luminosity due to the AGN is low, optical diagnostics are insensitive to the presence of the AGN. In this regime of parameter space, the mid-infrared diagnostics offer a powerful tool for uncovering AGN missed by optical spectroscopy. The AGN bolometric luminosities in our sample range from ~3 X 10^41 - ~2 X 10^43 ergs s^-1, which, based on the Eddington limit, corresponds to a lower mass limit for the black hole that ranges from ~3 X 10^3Mdot to as high as ~1.5 X 10^5Mdot. These lower mass limits however do not put a strain on the well-known relationship between the black hole mass and the host galaxys stellar velocity dispersion established in predominantly early-type galaxies. Our findings add to the growing evidence that black holes do form and grow in low-bulge environments and that they are significantly more common than optical studies indicate.

قيم البحث

اقرأ أيضاً

136 - Y. Y. Kovalev 2008
A review is given on the current status and selected results from large VLBI surveys of compact extragalactic radio sources made between 13 cm and 3 mm wavelengths and covering the entire sky. More than 4200 objects are observed and imaged with dynam ic ranges from a hundred to several thousand at (sub)parsec scales. Implications to the VSOP-2 project are discussed.
480 - Mark Lacy 2020
The Spitzer Space Telescope revolutionized studies of Active Galactic Nuclei (AGNs). Its combined sensitivity and mapping speed at mid-infrared wavelengths revealed a substantial population of highly-obscured AGNs. This population implies a higher ra diative accretion efficiency, and thus possibly a higher spin for black holes than indicated by surveys in the optical and X-ray. The unique mid-infrared spectrographic capability of Spitzer gave important insights into the distribution and nature of the dust surrounding AGNs, enabling the separation of AGN and starburst components, the detection of silicate features in emission from hot dust, and the identification of shocked gas associated with AGN activity. The sensitivity of Spitzer allowed almost complete identification of the host galaxies of samples of AGNs selected in the X-ray and radio. As we look forward to the James Webb Space Telescope, the lessons learned from Spitzer studies will inform observational programs with new and upcoming infrared facilities.
We have conducted a high-resolution spectroscopic study using Spitzer of 18 bulgeless (Sd/Sdm) galaxies that show no definitive signatures of nuclear activity in their optical spectra. This is the first systematic mid-IR search for weak or hidden AGN s in a statistically significant sample of bulgeless disk galaxies. Based on the detection of the high-ionization [NeV] line, we report the discovery of an AGN in one out of the 18 galaxies in the sample. This galaxy, NGC 4178, is a nearby edge-on Sd galaxy, which likely hosts a prominent nuclear star cluster (NSC). The bolometric luminosity of the AGN inferred from the [NeV] luminosity is ~ 8e41 ergs/s. This is almost two orders of magnitude greater than the luminosity of the AGN in NGC 4395, the best studied AGN in a bulgeless disk galaxy. Assuming that the AGN in NGC 4178 is radiating below the Eddington limit, the lower mass limit for the black hole is ~ 6e3M_sun. The fact that none of the other galaxies in the sample shows any evidence for an AGN demonstrates that while the AGN detection rate based on mid-IR diagnostics is high (30-40%) in optically quiescent galaxies with pseudobulges, it drops drastically in Sd/Sdm galaxies. Our observations therefore confirm that AGNs in completely bulgeless disk galaxies are not hidden in the optical but truly are rare. Of the three Sd galaxies with AGNs known so far, all have prominent NSCs, suggesting that in the absence of a well-defined bulge, the galaxy must possess a NSC in order to host an AGN. While the presence of a NSC appears to be a requirement for hosting an AGN in bulgeless galaxies, neither the properties of the NSC nor those of the host galaxy appear exceptional in late-type AGN hosts. The recipe for forming and growing a central black hole in a bulgeless galaxy therefore remains unknown.
In this paper, we investigate 2727 galaxies observed by MaNGA as of June 2016 to develop spatially resolved techniques for identifying signatures of active galactic nuclei (AGN). We identify 303 AGN candidates. The additional spatial dimension impose s challenges in identifying AGN due to contamination from diffuse ionized gas, extra-planar gas and photoionization by hot stars. We show that the combination of spatially-resolved line diagnostic diagrams and additional cuts on H$alpha$ surface brighness and H$alpha$ equivalent width can distinguish between AGN-like signatures and high-metallicity galaxies with LINER-like spectra. Low mass galaxies with high specific star formation rates are particularly difficult to diagnose and routinely show diagnostic line ratios outside of the standard star-formation locus. We develop a new diagnostic -- the distance from the standard diagnostic line in the line-ratios space -- to evaluate the significance of the deviation from the star-formation locus. We find 173 galaxies that would not have been selected as AGN candidates based on single-fibre spectral measurements but exhibit photoionization signatures suggestive of AGN activity in the MaNGA resolved observations, underscoring the power of large integral field unit (IFU) surveys. A complete census of these new AGN candidates is necessary to understand their nature and probe the complex co-evolution of supermassive black holes and their hosts.
99 - M. Das 2017
Galaxy mergers play a crucial role in the formation of massive galaxies and the buildup of their bulges. An important aspect of the merging process is the in-spiral of the supermassive black-holes (SMBHs) to the centre of the merger remnant and the e ventual formation of a SMBH binary. If both the SMBHs are accreting they will form a dual or binary active galactic nucleus (DAGN). The final merger remnant is usually very bright and shows enhanced star formation. In this paper we summarize the current sample of DAGN from previous studies and describe methods that can be used to identify strong DAGN candidates from optical and spectroscopic surveys. These methods depend on the Doppler separation of the double peaked AGN emission lines, the nuclear velocity dispersion of the galaxies and their optical/UV colours. We describe two high resolution, radio observations of DAGN candidates that have been selected based on their double peaked optical emission lines (DPAGN). We also examine whether DAGN host galaxies have higher star formation rates (SFRs) compared to merging galaxies that do not appear to have DAGN. We find that the SFR is not higher for DAGN host galaxies. This suggests that the SFRs in DAGN host galaxies is due to the merging process itself and not related to the presence of two AGN in the system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا