ترغب بنشر مسار تعليمي؟ اضغط هنا

Exotic (anti)ferromagnetism in single crystals of Pr6Ni2Si3

54   0   0.0 ( 0 )
 نشر من قبل Yuri Janssen
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ternary intermetallic compound Pr6Ni2Si3, is a member of a structure series of compounds based on a triangular structure where the number of Pr atoms in the prism cross section can be systematically varied. Pr6Ni2Si3 contains two distinct Pr lattice sites which result in complex interactions between the magnetic ions. Extensive measurements of specific heat and magnetization on single crystal samples indicate that Pr6Ni2Si3 orders with both a ferromagnet and an antiferromagnet component, with ordering temperatures of 39.6 K and ~ 32 K, respectively. The ferromagnetic component // c-axis is accompanied by a large hysteresis, and the antiferromagnetic component,_|_ c-axis is accompanied by a spin-flop-type transition. More detailed measurements, of the vector magnetization, indicate that the ferromagnetic and the antiferromagnetic order appear independent of each other. These results not only clarify the behavior of Pr6Ni2Si3 itself, but also of the other members of the structure series, Pr5Ni2Si3 and Pr15Ni7Si10.

قيم البحث

اقرأ أيضاً

104 - Z. Q. Liu , W. M. Lu , S. L. Lim 2012
The search for oxide-based room-temperature ferromagnetism has been one of the holy grails in condensed matter physics. Room-temperature ferromagnetism observed in Nb-doped SrTiO3 single crystals is reported in this Rapid Communication. The ferromagn etism can be eliminated by air annealing (making the samples predominantly diamagnetic) and can be recovered by subsequent vacuum annealing. The temperature dependence of magnetic moment resembles the temperature dependence of carrier density, indicating that the magnetism is closely related to the free carriers. Our results suggest that the ferromagnetism is induced by oxygen vacancies. In addition, hysteretic magnetoresistance was observed for magnetic field parallel to current, indicating that the magnetic moments are in the plane of the samples. The x-ray photoemission spectroscopy, the static time-of-flight and the dynamic secondary ion mass spectroscopy and proton induced x-ray emission measurements were performed to examine magnetic impurities, showing that the observed ferromagnetism is unlikely due to any magnetic contaminant.
188 - Yan Sun , Qiunan Xu , Yang Zhang 2020
The chirality of chiral multifold fermions in reciprocal space is related to the chirality of the crystal lattice structure in real space. In this work, we propose a strategy to detect and identify opposite-chirality multifold fermions in nonmagnetic systems by means of second-order optical transports. The chiral crystals are related by an inversion operation and cannot overlap with each other by any experimental operation, and the chiral multifold fermions in the crystals host opposite chiralities for a given k-point. A change of chirality is indicated by a sign change of the second-order charge current dominated by chiral fermions. This strategy is effective to study the relationship between chiralities in reciprocal and real spaces by utilizing bulk transport.
A surface layer (skin) that is functionally and structurally different from the bulk was found in single crystals of BiFeO3. Impedance analysis indicates that a previously reported anomaly at T* ~ 275 pm 5 ^/circC corresponds to a phase transition co nfined at the surface of BiFeO3. X-ray photoelectron spectroscopy and X-ray diffraction as a function of both incidence angle and photon wavelength unambiguously confirm the existence of a skin with an estimated skin depth of few nanometres, elongated out-of-plane lattice parameter, and lower electron density. Temperature-dependent x-ray diffraction has revealed that the skins out of plane lattice parameter changes abruptly at T*, while the bulk preserves an unfeatured linear thermal expansion. The distinct properties of the skin are likely to dominate in large surface to volume ratios scenarios such as fine grained ceramics and thin films, and should be particularly relevant for electronic devices that rely on interfacial couplings such as exchange bias.
Bismuth oxyselenide (Bi$_2$O$_2$Se) attracts great interest as a potential n-type complement to p-type thermoelectric oxides in practical applications. Previous investigations were generally focused on polycrystals. Here, we performed a study on the thermoelectric properties of Bi$_2$O$_2$Se single crystals. Our samples exhibit electron mobility as high as 250 cm$^2.$V$^{-1}$.s$^{-1}$ and thermal conductivity as low as $2$ W.m$^{-1}$.K$^{-1}$ near room temperature. The maximized figure of merit is yielded to be 0.188 at 390 K, higher than that of polycrystals. Consequently, a rough estimation of the phonon mean free path ($ell_textrm{ph}$) from the kinetic model amounts to 12 $r{A}$ at 390 K and follows a $T^{-1}$ behavior. An extrapolation of $ell_textrm{ph}$ to higher temperatures indicates that this system approaches the Ioffe-Regel limit at about 1100 K. In light of the phonon dispersions, we argue that the ultralow $ell_textrm{ph}$ is attributed to intense anharmonic phonon-phonon scattering, including Umklapp process and acoustic to optical phonon scattering. Our results suggest that single crystals provide a further improvement of thermoelectric performance of Bi$_2$O$_2$Se.
The paper describes heterostructures spontaneously formed in PMN-PT single crystals cooled under bias electric field applied along [001]pc and then zero-field-heated in the vicinity of the so-called depoling temperature. In particular, formation of l amellar structures composed of tetragonal-like and rhombohedral-like layers extending over macroscopic (mm) lengths is demonstrated by optical observations and polarized Raman investigations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا