ترغب بنشر مسار تعليمي؟ اضغط هنا

A tidal disruption model for the gamma-ray burst of GRB 060614

64   0   0.0 ( 0 )
 نشر من قبل Lu Ye
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The combination of a long duration and the absence of any accompanying supernova clearly shows that GRB 060614 can not be grouped into the two conventional classes of gamma-ray bursts, i.e. the long/soft bursts deemed to be collapsars and the short/hard bursts deemed to be merging binary compact stars. A new progenitor model is required for this anomalous gamma-ray burst. We propose that GRB 060614 might be produced through the tidal disruption of a star by an intermediate mass black hole. In this scenario, the long duration and the lack of any associated supernova are naturally expected. The theoretical energy output is also consistent with observations. The observed 9-s periodicity in the $gamma$-ray light curve of GRB 060614 can also be satisfactorily explained.

قيم البحث

اقرأ أيضاً

100 - B. Gendre 2011
The Swift burst GRB 110205A was a very bright burst visible in the Northern hemisphere. GRB 110205A was intrinsically long and very energetic and it occurred in a low-density interstellar medium environment, leading to delayed afterglow emission and a clear temporal separation of the main emitting components: prompt emission, reverse shock, and forward shock. Our observations show several remarkable features of GRB 110205A : the detection of prompt optical emission strongly correlated with the BAT light curve, with no temporal lag between the two ; the absence of correlation of the X-ray emission compared to the optical and high energy gamma-ray ones during the prompt phase ; and a large optical re-brightening after the end of the prompt phase, that we interpret as a signature of the reverse shock. Beyond the pedagogical value offered by the excellent multi-wavelength coverage of a GRB with temporally separated radiating components, we discuss several questions raised by our observations: the nature of the prompt optical emission and the spectral evolution of the prompt emission at high-energies (from 0.5 keV to 150 keV) ; the origin of an X-ray flare at the beginning of the forward shock; and the modeling of the afterglow, including the reverse shock, in the framework of the classical fireball model.
GRB 060614 is a remarkable GRB observed by Swift with puzzling properties, which challenge current progenitor models. The lack of any bright SN down to very strict limits and the vanishing spectral lags are typical of short GRBs, strikingly at odds w ith the long (102s) duration of this event. Here we present spectral and temporal analysis of the Swift observations. We show that the burst presents standard optical, UV and X-ray afterglows. An achromatic break is observed simultaneously in optical and X-rays, at a time consistent with the break in the R-band light curve measured by the VLT. The achromatic behaviour and the consistent post-break decay slopes make GRB 060614 one of the best examples of a jet break for a Swift burst. The optical, UV and X-rays afterglow light curves have also an earlier break at ~30 ks. In the optical, there is strong spectral evolution around this break, suggesting the passage of a break frequency through the optical/UV band. The very blue spectrum at early times and the trend in the light curves (rising at low frequencies, and decaying at higher energies) suggest this may be the injection frequency. The early X-ray light curve is well interpreted as the X-ray counterpart of the burst extended emission. Spectral analysis of BAT/XRT data in the 80s overlap time show that the Ep of the burst has decreased to as low as 8keV at the beginning of the XRT observation. The Ep continues to decrease through the XRT energy band and exits it at about 500s after the trigger. The average Ep of the burst is likely < 24 keV but larger than 8 keV. The initial peak observed by BAT is however distinctly harder than the rest with Ep ~300 keV as measured by Konus Wind. Considering the time-averaged spectral properties, GRB 060614 is consistent with the Eiso-Ep_rest, Egamma-Ep_rest, and Liso-Ep correlations.
Gamma-Ray Bursts (GRBs) fall into two classes: short-hard and long-soft bursts. The latter are now known to have X-ray and optical afterglows, to occur at cosmological distances in star-forming galaxies, and to be associated with the explosion of mas sive stars. In contrast, the distance scale, the energy scale, and the progenitors of short bursts have remained a mystery. Here we report the discovery of a short-hard burst whose accurate localization has led to follow-up observations that have identified the X-ray afterglow and (for the first time) the optical afterglow of a short-hard burst. These, in turn, have led to identification of the host galaxy of the burst as a late-type galaxy at z=0.16 showing that at least some short-hard bursts occur at cosmological distances in the outskirts of galaxies, and are likely to be due to the merging of compact binaries.
On 19 March 2008, the northern sky was the stage of a spectacular optical transient that for a few seconds remained visible to the naked eye. The transient was associated with GRB 080319B, a gamma-ray burst at a luminosity distance of about 6 Gpc (st andard cosmology), making it the most luminous optical object ever recorded by human kind. We present comprehensive sky monitoring and multi-color optical follow-up observations of GRB 080319B collected by the RAPTOR telescope network covering the development of the explosion and the afterglow before, during, and after the burst. The extremely bright prompt optical emission revealed features that are normally not detectable. The optical and gamma-ray variability during the explosion are correlated, but the optical flux is much greater than can be reconciled with single emission mechanism and a flat gamma-ray spectrum. This extreme optical behavior is best understood as synchrotron self-Compton model (SSC). After a gradual onset of the gamma-ray emission, there is an abrupt rise of the prompt optical flux suggesting that variable self-absorption dominates the early optical light curve. Our simultaneous multi-color optical light curves following the flash show spectral evolution consistent with a rapidly decaying red component due to large angle emission and the emergence of a blue forward shock component from interaction with the surrounding environment. While providing little support for the reverse shock that dominates the early afterglow, these observations strengthen the case for the universal role of the SSC mechanism in generating gamma-ray bursts.
Gamma-ray bursts (GRBs) of the long-duration class are the most luminous sources of electromagnetic radiation known in the Universe. They are generated by outflows of plasma ejected at near the speed of light by newly formed neutron stars or black ho les of stellar mass at cosmological distances. Prompt flashes of MeV gamma rays are followed by longer-lasting afterglow emission from radio waves to GeV gamma rays, due to synchrotron radiation by energetic electrons in accompanying shock waves. Although emission of gamma rays at even higher, TeV energies by other radiation mechanisms had been theoretically predicted, it had never been detected previously. Here we report the clear detection of GRB 190114C in the TeV band, achieved after many years of dedicated searches for TeV emission from GRBs. Gamma rays in the energy range 0.2--1 TeV are observed from about 1 minute after the burst (at more than 50 standard deviations in the first 20 minutes). This unambiguously reveals a new emission component in the afterglow of a GRB, whose power is comparable to that of the synchrotron component. The observed similarity in the radiated power and temporal behaviour of the TeV and X-ray bands points to processes such as inverse Compton radiation as the mechanism of the TeV emission, while processes such as synchrotron emission by ultrahigh-energy protons are disfavoured due to their low radiative efficiency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا