ترغب بنشر مسار تعليمي؟ اضغط هنا

Time translation of quantum properties

102   0   0.0 ( 0 )
 نشر من قبل Leonardo Vanni
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on the notion of time translation, we develop a formalism to deal with the logic of quantum properties at different times. In our formalism it is possible to enlarge the usual notion of context to include composed properties involving properties at different times. We compare our results with the theory of consistent histories.

قيم البحث

اقرأ أيضاً

Many open quantum systems encountered in both natural and synthetic situations are embedded in classical-like baths. Often, the bath degrees of freedom may be represented in terms of canonically conjugate coordinates, but in some cases they may requi re a non-canonical or non-Hamiltonian representation. Herein, we review an approach to the dynamics and statistical mechanics of quantum subsystems embedded in either non-canonical or non-Hamiltonian classical-like baths which is based on operator-valued quasi-probability functions. These functions typically evolve through the action of quasi-Lie brackets and their associated Quantum-Classical Liouville Equations.
Quantum error correction was invented to allow for fault-tolerant quantum computation. Systems with topological order turned out to give a natural physical realization of quantum error correcting codes (QECC) in their groundspaces. More recently, in the context of the AdS/CFT correspondence, it has been argued that eigenstates of CFTs with a holographic dual should also form QECCs. These two examples raise the question of how generally eigenstates of many-body models form quantum codes. In this work we establish new connections between quantum chaos and translation-invariance in many-body spin systems, on one hand, and approximate quantum error correcting codes (AQECC), on the other hand. We first observe that quantum chaotic systems exhibiting the Eigenstate Thermalization Hypothesis (ETH) have eigenstates forming approximate quantum error-correcting codes. Then we show that AQECC can be obtained probabilistically from translation-invariant energy eigenstates of every translation-invariant spin chain, including integrable models. Applying this result to 1D classical systems, we describe a method for using local symmetries to construct parent Hamiltonians that embed these codes into the low-energy subspace of gapless 1D quantum spin chains. As explicit examples we obtain local AQECC in the ground space of the 1D ferromagnetic Heisenberg model and the Motzkin spin chain model with periodic boundary conditions, thereby yielding non-stabilizer codes in the ground space and low energy subspace of physically plausible 1D gapless models.
Quantum computers hold promise to greatly improve the efficiency of quantum simulations of materials and to enable the investigation of systems and properties more complex than tractable on classical architectures. Here, we discuss computational fram eworks to carry out electronic structure calculations of solids on noisy intermediate scale quantum computers using embedding theories and effective many-body Hamiltonians. We focus on a specific class of materials, i.e., spin defects in solids, which are promising systems to build future quantum technologies, e.g., computers, sensors and devices for quantum communications. Although quantum simulations on quantum architectures are in their infancy, promising results for realistic systems appear within reach.
65 - Sunho Kim , Junde Wu 2015
The quantum discord was introduced by Ollivier, Zurek, Henderson and Vedral as an indicator of the degree of quantumness of mixed states. In this paper, we give out the decomposition condition of quantum discords. Moreover, we show that under the con dition, the quantum correlations between the quantum systems can be captured completely by the entanglement measure.
We apply the recently developed general theory of quantum time distributions arXiv:2010.07575 to find the distribution of arrival times at the detector. Even though the Hamiltonian in the absence of detector is hermitian, the time evolution of the sy stem before detection involves dealing with a non-hermitian operator obtained from the projection of the hermitian Hamiltonian onto the region in front of the detector. Such a formalism eventually gives rise to a simple and physically sensible analytical expression for the arrival time distribution, for arbitrary wave packet moving in one spatial dimension with negligible distortion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا