ترغب بنشر مسار تعليمي؟ اضغط هنا

The focal-plane instruments on board WSO-UV

57   0   0.0 ( 0 )
 نشر من قبل Isabella Pagano
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dedicated to spectroscopic and imaging observations of the ultraviolet sky, the World Space Observatory for Ultraviolet Project is a Russia led international collaboration presently involving also China, Germany, Italy, Spain and Ukraine. The mission consists of a 1.7m telescope able to perform: a) high resolution (R greater than 60000) spectroscopy by means of two echelle spectrographs covering the 103-310 nm range; b) long slit (1x75 arcsec) low resolution (R about 1500-2500) spectroscopy using a near-UV channel and a far-UV channel to cover the 102-310nm range; c) deep UV and diffraction limited UV and optical imaging (from 115 to 700 nm). Overall information on the project and on its science objectives are given by other two papers in these proceedings. Here we present the WSO-UV focal plane instruments, their status of implementation, and the expected performances.

قيم البحث

اقرأ أيضاً

The World Space Observatory Project is a new space mission concept, grown out the needs of the Astronomical community to have access to the part of the electromagnetic spectrum where all known physics can be studied on all possible time scales: the U ltraviolet range. The physical diagnostics in this domain supply a richness of new experimental data unmatched by any other wavelength range, for the studies of the Universe. As WSO/UV has been driven by the needs of scientists from many different countries, a new implementation model was needed to bring the World Space Observatory to reality. The WSO/UV consists of a single Ultraviolet Telescope in orbit, incorporating a primary mirror of 1.7 m diameter feeding a UV spectrograph and UV Imagers.
We summarize the capabilities of the World Space Observatory (UV) Project (WSO/UV). An example of the importance of this project (with a planned launch date of 2007/8) for the study of Classical Novae is given.
The X and Gamma Imaging Spectrometer instrument on-board the THESEUS mission (selected by ESA in the framework of the Cosmic Vision M5 launch opportunity, currently in phase A) is based on a detection plane composed of several thousands of single act ive elements. Each element comprises a 4.5x4.5x30 mm 3 CsI(Tl) scintillator bar, optically coupled at both ends to Silicon Drift Detectors (SDDs). The SDDs acts both as photodetectors for the scintillation light and as direct X-ray sensors. In this paper the design of the XGIS detection plane is reviewed, outlining the strategic choices in terms of modularity and redundancy of the system. Results on detector-electronics prototypes are also described. Moreover, the design and development of the low-noise front-end electronics is presented, emphasizing the innovative architectural design based on custom-designed Application-Specific Integrated Circuits (ASICs).
This paper reports on the current status of the World Space Observatory WSO-UV, a space mission for UV astronomy, planned for launch at the beginning of next decade. It is based on a 1.7 m telescope, with focal plane instruments including high resolu tion spectrographs, long slit low resolution spectrographs and imaging cameras.
The World Space Observatory for Ultraviolet (WSO-UV) is an orbital optical telescope with a 1.7 m-diameter primary mirror currently under development. The WSO-UV is aimed to operate in the 115-310 nm UV spectral range. Its two major science instrumen ts are UV spectrographs and a UV imaging field camera with filter wheels. The WSO-UV project is currently in the implementation phase, with a tentative launch date in 2023. Recently, two additional instruments devoted to exoplanets have been proposed for WSO-UV, which are the focus of this paper. UVSPEX, a UV-Spectrograph for Exoplanets, aims to determine atomic hydrogen and oxygen abundance in the exospheres of terrestrial exoplanets. The spectral range is 115-130 nm which enables simultaneous measurement of hydrogen and oxygen emission intensities during an exoplanet transit. Study of exosphere transit photometric curves can help differentiate among different types of rocky planets. The exospheric temperature of an Earth-like planet is much higher than that of a Venus-like planet, because of the low mixing ratio of the dominant coolant (CO2) in the upper atmosphere of the former, which causes a large difference in transit depth at the oxygen emission line. Thus, whether the terrestrial exoplanet is Earth-like, Venus-like, or other can be determined. SCEDI, a Stellar Coronagraph for Exoplanet Direct Imaging is aimed to directly detect the starlight reflected from exoplanets orbiting their parent stars or from the stellar vicinity including circumstellar discs, dust, and clumps. SCEDI will create an achromatic (optimized to 420-700 nm wavelength range), high-contrast stellocentric coronagraphic image of a circumstellar vicinity. The two instruments: UVSPEX and SCEDI, share common power and control modules. The present communication outlines the science goals of both proposed instruments and explains some of their engineering features.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا