ترغب بنشر مسار تعليمي؟ اضغط هنا

Graviton production with 2 jets at the LHC in large extra dimensions

76   0   0.0 ( 0 )
 نشر من قبل Partha Konar
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study Kaluza-Klein (KK) graviton production in the large extra dimensions model via 2 jets plus missing transverse momentum signatures at the LHC. We make predictions for both the signal and the dominant Zjj and Wjj backgrounds, where we introduce missing P_T-dependent jet selection cuts that ensure the smallness of the 2-jet rate over the 1-jet rate. With the same jet selection cuts, the distributions of the two jets and their correlation with the missing transverse momentum provide additional evidence for the production of an invisible massive object.

قيم البحث

اقرأ أيضاً

194 - Giorgio Busoni 2016
I extract new limits on the coefficient of the effective operator generated by tree-level graviton exchange in large extra dimensions from $pp rightarrow jj$ angular distributions at LHC: $M_T > 6.8$ TeV (CMS after $2.6 fb^{-1}$ of integrated luminos ity) and $M_T > 8.3$ TeV (ATLAS after $3.6 fb^{-1}$). I also compare such limits to the ones obtained using the full graviton amplitude, and discuss the impact of additional constrains arising from other datasets, such as Mono-Jet.
Extensions of the standard model with universal extra dimensions are interesting both as phenomenological templates as well as model-building fertile ground. For instance, they are one the prototypes for theories exhibiting compressed spectra, leadin g to difficult searches at the LHC since the decay products of new states are soft and immersed in a large standard model background. Here we study the phenomenology at the LHC of theories with two universal extra dimensions. We obtain the current bound by using the production of second level excitations of electroweak gauge bosons decaying to a pair of leptons and study the reach of the LHC Run~II in this channel. We also introduce a new channel originating in higher dimensional operators and resulting in the single production of a second level quark excitation. Its subsequent decay into a hard jet and lepton pair resonance would allow the identification of a more model-specific process, unlike the more generic vector resonance signal. We show that the sensitivity of this channel to the compactification scale is very similar to the one obtained using the vector resonance.
In large extra dimensional Kaluza-Klein (KK) scenario, where the usual Standard Model (SM) matter is confined to a 3+1-dimensional hypersurface called the 3-brane and gravity can propagate to the bulk (D=4+d, d being the number of extra spatial dimen sions), the light graviton KK modes can be produced inside the supernova core due to the usual nucleon-nucleon bremstrahlung, electron-positron and photon-photon annihilations. This photon inside the supernova becomes plasmon due to the plasma effect. In this paper, we study the energy-loss rate of SN 1987A due to the KK gravitons produced from the plasmon-plasmon annihilation. We find that the SN 1987A cooling rate leads to the conservative bound $M_D$ > 22.9 TeV and 1.38 TeV for the case of two and three space-like extra dimensions.
63 - J. Duarte 2017
We investigate possible scenarios of light-squark production at the LHC as a new mechanism to produce Higgs bosons in association with jets. The study is motivated by the SUSY search for H+jets events, performed by the CMS collaboration on 8 and 13 T eV data using the razor variables. Two simplified models are proposed to interpret the observations in this search. The constraint from Run I and the implications for Run II and beyond are discussed.
We investigate the potential of the long-baseline Deep Underground Neutrino Experiment (DUNE) to study large-extra-dimension (LED) models originally proposed to explain the smallness of neutrino masses by postulating that right-handed neutrinos, unli ke all standard model fermion fields, can propagate in the bulk. The massive Kaluza-Klein (KK) modes of the right-handed neutrino fields modify the neutrino oscillation probabilities and can hence affect their propagation. We show that, as far as DUNE is concerned, the LED model is indistinguishable from a $(3 + 3N)$-neutrino framework for modest values of $N$; $N$ = 1 is usually a very good approximation. Nonetheless, there are no new sources of $CP$-invariance violation other than one $CP$-odd phase that can be easily mapped onto the $CP$-odd phase in the standard three-neutrino paradigm. We analyze the sensitivity of DUNE to the LED framework, and explore the capability of DUNE to differentiate the LED model from the three-neutrino scenario and from a generic $(3 + 1)$-neutrino model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا