ﻻ يوجد ملخص باللغة العربية
The full moduli space M of a class of N=1 supersymmetric gauge theories is studied. For gauge theories living on a stack of D3-branes at Calabi-Yau singularities X, M is a combination of the mesonic and baryonic branches, the former being the symmetric product of X. In consonance with the mathematical literature, the single brane moduli space is called the master space F. Illustrating with a host of explicit examples, we exhibit many algebro-geometric properties of the master space such as when F is toric Calabi-Yau, behaviour of its Hilbert series, its irreducible components and its symmetries. In conjunction with the plethystic programme, we investigate the counting of BPS gauge invariants, baryonic and mesonic, using the geometry of F and show how its refined Hilbert series not only engenders the generating functions for the counting but also beautifully encode ``hidden global symmetries of the gauge theory which manifest themselves as symmetries of the complete moduli space M for arbitrary number of branes.
We classify 5d N=1 gauge theories carrying a simple gauge group that can arise by mass-deforming 5d SCFTs and 6d SCFTs (compactified on a circle, possibly with a twist). For theories having a 6d UV completion, we determine the tensor branch data of t
We discuss fractional D3-branes on the orbifold C^3/Z_2*Z_2. We study the open and the closed string spectrum on this orbifold. The corresponding N=1 theory on the brane has, generically, a U(N_1)*U(N_2)*U(N_3)*U(N_4) gauge group with matter in the b
Reflexive polygons have been extensively studied in a variety of contexts in mathematics and physics. We generalize this programme by looking at the 45 different lattice polygons with two interior points up to SL(2,$mathbb{Z}$) equivalence. Each corr
We show that a proposed duality [arXiv:0711.0054] between infinitely coupled gauge theories and superconformal field theories (SCFTs) with weakly gauged flavor groups predicts the existence of new rank 1 SCFTs. These superconformal fixed point theori
A formulation of (non-anticommutative) N=1/2 supersymmetric U(N) gauge theory in noncommutative space is studied. We show that at one loop UV/IR mixing occurs. A generalization of Seiberg-Witten map to noncommutative and non-anticommutative supersp