ﻻ يوجد ملخص باللغة العربية
We calculate the one-body temperature Greens (Matsubara) function of the unitary Fermi gas via Quantum Monte Carlo, and extract the spectral weight function $A(p,omega)$ using the methods of maximum entropy and singular value decomposition. From $A(p,omega)$ we determine the quasiparticle spectrum, which can be accurately parametrized by three functions of temperature: an effective mass $m^*$, a mean-field potential $U$, and a gap $Delta$. Below the critical temperature $T_c=0.15varepsilon_F$ the results for $m^*$, $U$ and $Delta$ can be accurately reproduced using an independent quasiparticle model. We find evidence of a pseudogap in the fermionic excitation spectrum for temperatures up to {$T^*approx 0.20varepsilon_{F} > T_c$}.
A unitary Fermi gas has a surprisingly rich spectrum of large amplitude modes of the pairing field alone, which defies a description within a formalism involving only a reduced set of degrees of freedom, such as quantum hydrodynamics or a Landau-Ginz
The Quantum Monte Carlo method for spin 1/2 fermions at finite temperature is formulated for dilute systems with an s-wave interaction. The motivation and the formalism are discussed along with descriptions of the algorithm and various numerical issu
Quantized vortices carry the angular momentum in rotating superfluids, and are key to the phenomenon of quantum turbulence. Advances in ultra-cold atom technology enable quantum turbulence to be studied in regimes with both experimental and theoretic
Thermodynamic properties of an ultracold Fermi gas in a harmonic trap are calculated within a local density approximation, using a conserving many-body formalism for the BCS to BEC crossover problem, which has been developed by Haussmann et al. [Phys
We analyze the problem of eliminating finite-size errors from quantum Monte Carlo (QMC) energy data. We demonstrate that both (i) adding a recently proposed [S. Chiesa et al., Phys. Rev. Lett. 97, 076404 (2006)] finite-size correction to the Ewald en