ﻻ يوجد ملخص باللغة العربية
A simple model of Laplacian growth is considered, in which the growth takes place only at the tips of long, thin fingers. In a recent paper, Carleson and Makarov used the deterministic Loewner equation to describe the evolution of such a system. We extend their approach to a channel geometry and show that the presence of the side walls has a significant influence on the evolution of the fingers and the dynamics of the screening process, in which longer fingers suppress the growth of the shorter ones.
In this paper we statistically analyze the Fokker-Planck (FP) equation of Schramm-Loewner evolution (SLE) and its variant SLE($kappa,rho_c$). After exploring the derivation and the properties of the Langevin equation of the tip of the SLE trace, we o
Starting from a master equation, we derive the evolution equation for the size distribution of elements in an evolving system, where each element can grow, divide into two, and produce new elements. We then probe general solutions of the evolution qu
We develop a theoretical approach to ``spontaneous stochasticity in classical dynamical systems that are nearly singular and weakly perturbed by noise. This phenomenon is associated to a breakdown in uniqueness of solutions for fixed initial data and
We performed extensive numerical simulation of diffusion-limited aggregation in two dimensional channel geometry. Contrary to earlier claims, the measured fractal dimension D = 1.712 +- 0.002 and its leading correction to scaling are the same as in t
The effect of geometry in the statistics of textit{nonlinear} universality classes for interface growth has been widely investigated in recent years and it is well known to yield a split of them into subclasses. In this work, we investigate this for