ﻻ يوجد ملخص باللغة العربية
We determine the excitation spectrum of a bosonic dipolar quantum gas in a one-dimensional geometry, from the dynamical density-density correlation functions simulated by means of Reptation Quantum Monte Carlo techniques. The excitation energy is always vanishing at the first vector of the reciprocal lattice in the whole crossover from the liquid-like at low density to the quasi-ordered state at high density, demonstrating the absence of a roton minimum. Gaps at higher reciprocal lattice vectors are seen to progressively close with increasing density, while the quantum state evolves into a quasi-periodic structure. The simulational data together with the uncertainty-principle inequality also provide a rigorous proof of the absence of long-range order in such a super-strongly correlated system. Our conclusions confirm that the dipolar gas is in a Luttinger-liquid state, significantly affected by the dynamical correlations. The connection with ongoing experiments is also discussed.
In this letter we consider dipolar quantum gases in a quasi-one-dimensional tube with dipole moment perpendicular to the tube direction. We deduce the effective one-dimensional interaction potential and show that this potential is not purely repulsiv
We calculate the excitation modes of a 1D dipolar quantum gas confined in a harmonic trap with frequency $omega_0$ and predict how the frequency of the breathing n=2 mode characterizes the interaction strength evolving from the Tonks-Girardeau value
The ground state and structure of a one-dimensional Bose gas with dipolar repulsions is investigated at zero temperature by a combined Reptation Quantum Monte Carlo (RQMC) and bosonization approach. A non trivial Luttinger-liquid behavior emerges in
We consider zero temperature behavior of dynamic response functions of 1D systems near edges of support in momentum-energy plane $(k, omega).$ The description of the singularities of dynamic response functions near an edge $epsilon(k)$ is given by th
We consider dipolar bosons in two tubes of one-dimensional lattices, where the dipoles are aligned to be maximally repulsive and the particle filling fraction is the same in each tube. In the classical limit of zero inter-site hopping, the particles