ترغب بنشر مسار تعليمي؟ اضغط هنا

The Detailed Evolution of E+A Galaxies into Early Types

56   0   0.0 ( 0 )
 نشر من قبل Yujin Yang
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Yujin Yang




اسأل ChatGPT حول البحث

Post-starburst, or E+A galaxies, are the best candidates for galaxies in transition from being gas-rich and star-forming to gas-poor and passively-evolving via galaxy-galaxy mergers. To determine what E+A galaxies become after their young stellar populations fade away, we present the detailed morphologies of 21 E+As using HST images. We find that E+As are similar to early types in that they have large bulge fractions (median B/T = 0.59), high Sersic index (n > 4), and high concentration indices (C > 4.3). The large fraction (70%) of E+As with positive color gradients (i.e., bluer nuclei) indicates that the young stellar populations are more concentrated than the old populations. We show that these positive color gradients can evolve into the negative gradients typical in E/S0s if the central parts of these galaxies are metal enhanced. E+A galaxies stand apart from the E/S0s in the edge-on projection of the Fundamental Plane, implying that E+As have, on average, a M/L that is ~3.8 times smaller than that of E/S0s. The tilt of the E+A FP indicates that the variation among stellar populations in these galaxies is closely tied to their structural parameters such that smaller or less massive galaxies have smaller M/L. We find a population of unresolved compact sources in nine E+As (45%). Their colors and luminosities are consistent with the hypothesis that these are newly formed star clusters. The bright end of the cluster LF is fainter in redder E+As, suggesting that the young star cluster systems have faded or been disrupted as the merger remnant aged. In summary, the morphologies, color profiles, scaling relations, and cluster populations are all consistent with the hypothesis that E+As galaxies are the results of mergers that evolve into early-type galaxies.

قيم البحث

اقرأ أيضاً

One important approach to the study of galaxy evolution is to identify those galaxies whose spectral and/or morphological characteristics suggest that they are in transition. For example, ``E+A galaxies, which have strong Balmer absorption lines and no significant [OII] emission, are generally interpreted as post-starburst galaxies in which the star formation ceased within the last Gyr. This transition between a star forming and non-star forming state is a critical link in any galaxy evolution model in which a blue, star forming disk galaxy evolves into a S0 or elliptical. Another possible evolutionary track is that the star formation in an ``E+A resumes at some later time, if enough gas remains in the galaxy after its starburst ends. Given this ambiguity, it is important to investigate (1) the environments role in ``E+A evolution, (2) the stellar and gas morphologies of ``E+As, (3) the likely progenitors of ``E+As, and (4) how common the ``E+A phase is in the evolution of galaxies. This proceeding summarizes recent results from several inter-related projects designed to address these questions. These projects focus on a sample of 21 nearby ``E+A galaxies (0.05 < z < 0.15) drawn from the Las Campanas Redshift Survey. These studies include VLA and HST observations, in addition to comparisons of these data with galaxy-galaxy interaction simulations and stellar population synthesis models.
86 - Yujin Yang 2004
We present HST/WFPC2 observations of the five bluest E+A galaxies (z~0.1) in the Zabludoff et al. sample to study whether their detailed morphologies are consistent with late-to-early type evolution and to determine what drives that evolution. The mo rphologies of four galaxies are disturbed, indicating that a galaxy-galaxy merger is at least one mechanism that leads to the E+A phase. Two-dimensional image fitting shows that the E+As are generally bulge-dominated systems, even though at least two E+As may have underlying disks. In the Fundamental Plane, E+As stand apart from the E/S0s mainly due to their high effective surface brightness. Fading of the young stellar population and the corresponding increase in their effective radii will cause these galaxies to migrate toward the locus of E/S0s. E+As have profiles qualitatively like those of normal power-law early-type galaxies, but have higher surface brightnesses. This result provides the first direct evidence supporting the hypothesis that power-law ellipticals form via gas-rich mergers. In total, at least four E+As are morphologically consistent with early-type galaxies. We detect compact sources, possibly young star clusters, associated with the galaxies. These sources are much brighter (M_R ~ -13) than Galactic globular clusters, have luminosities consistent with the brightest clusters in nearby starburst galaxies, and have blue colors consistent with the ages estimated from the E+A galaxy spectra (several 10^8 yr). Further study of such young star cluster candidates might provide the elusive chronometer needed to break the age/burst-strength degeneracy for these post-merger galaxies.
63 - F. Calura 2008
We study interstellar dust evolution in various environments by means of chemical evolution models for galaxies of different morphological types. We start from the formalism developed by Dwek (1998) to study dust evolution in the solar neighbourhood and extend it to ellipticals and dwarf irregular galaxies, showing how the evolution of the dust production rates and of the dust fractions depend on the galactic star formation history. The observed dust fractions observed in the solar neighbourhood can be reproduced by assuming that dust destruction depends the condensation temperatures T_c of the elements. In elliptical galaxies, type Ia SNe are the major dust factories in the last 10 Gyr. With our models, we successfully reproduce the dust masses observed in local ellipticals (~10^6 M_sun) by means of recent FIR and SCUBA observations. We show that dust is helpful in solving the iron discrepancy observed in the hot gaseous halos surrounding local ellipticals. In dwarf irregulars, we show how a precise determination of the dust depletion pattern could be useful to put solid constraints on the dust condensation efficiencies. Our results will be helpful to study the spectral properties of dust grains in local and distant galaxies.
We calculate the transverse momentum dependence in the production of two back-to-back hadrons in electron-positron annihilations at the medium/large energy scales of BES-III and BELLE experiments. We use the parameters of the transverse-momentum-depe ndent (TMD) fragmentation functions that were recently extracted from the semi-inclusive deep-inelastic-scattering multiplicities at low energy from HERMES. TMD evolution is applied according to different approaches and using different parameters for the nonperturbative part of the evolution kernel, thus exploring the sensitivity of our results to these different choices and to the flavor dependence of parton fragmentation functions. We discuss how experimental measurements could discriminate among the various scenarios.
We investigate the evolution of mass-selected early-type field galaxies using a sample of 28 gravitational lenses spanning the redshift range 0 < z < 1. Based on the redshift-dependent intercept of the fundamental plane in the rest frame B band, we m easure an evolution rate of d log (M/L)_B / dz = -0.56 +/- 0.04 (all errors are 1 sigma unless noted) if we directly compare to the local intercept measured from the Coma cluster. Re-fitting the local intercept helps minimize potential systematic errors, and yields an evolution rate of d log (M/L)_B / dz = -0.54 +/- 0.09. An evolution analysis of properly-corrected aperture mass-to-light ratios (defined by the lensed image separations) is closely related to the Faber-Jackson relation. In rest frame B band we find an evolution rate of d log (M/L)_B / dz = -0.41 +/- 0.21, a present-day characteristic magnitude of M_{*0} = -19.70 + 5 log h +/- 0.29 (assuming a characteristic velocity dispersion of sigma_{DM*} = 225 km/s), and a Faber-Jackson slope of gamma_{FJ} = 3.29 +/- 0.58. The measured evolution rates favor old stellar populations (mean formation redshift z_f > 1.8 at 2 sigma confidence for a Salpeter initial mass function and a flat Omega_m =0.3 cosmology) among early-type field galaxies, and argue against significant episodes of star formation at z < 1.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا