ﻻ يوجد ملخص باللغة العربية
A simple explicit example of a Roberts-type dynamo is given in which the alpha-effect of mean-field electrodynamics exists in spite of point-wise vanishing kinetic helicity of the fluid flow. In this way it is shown that alpha-effect dynamos do not necessarily require non-zero kinetic helicity. A mean-field theory of Roberts-type dynamos is established within the framework of the second-order correlation approximation. In addition numerical solutions of the original dynamo equations are given, that are independent of any approximation of that kind. Both theory and numerical results demonstrate the possibility of dynamo action in the absence of kinetic helicity.
We present nonlinear mean-field alpha-Omega dynamo simulations in spherical geometry with simplified profiles of kinematic alpha effect and shear. We take magnetic helicity evolution into account by solving a dynamical equation for the magnetic alpha
Magnetic helicity fluxes in turbulently driven alpha^2 dynamos are studied to demonstrate their ability to alleviate catastrophic quenching. A one-dimensional mean-field formalism is used to achieve magnetic Reynolds numbers of the order of 10^5. We
Dynamo action owing to helically forced turbulence and large-scale shear is studied using direct numerical simulations. The resulting magnetic field displays propagating wave-like behavior. This behavior can be modelled in terms of an alphaOmega dyna
The evolution of magnetic fields is studied using simulations of forced helical turbulence with strong imposed shear. After some initial exponential growth, the magnetic field develops a large scale travelling wave pattern. The resulting field struct
The motivation for considering distributed large scale dynamos in the solar context is reviewed in connection with the magnetic helicity constraint. Preliminary accounts of 3-dimensional direct numerical simulations (in spherical shell segments) and