ترغب بنشر مسار تعليمي؟ اضغط هنا

Relativity and the low energy nd Ay puzzle

34   0   0.0 ( 0 )
 نشر من قبل Roman Skibinski
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We solve the Faddeev equation in an exactly Poincare invariant formulation of the three-nucleon problem. The dynamical input is a relativistic nucleon-nucleon interaction that is exactly on-shell equivalent to the high precision CDBonn NN interaction. S-matrix cluster properties dictate how the two-body dynamics is embedded in the three-nucleon mass operator. We find that for neutron laboratory energies above 20 MeV relativistic effects on Ay are negligible. For energies below 20 MeV dynamical effects lower the nucleon analyzing power maximum slightly by 2% and Wigner rotations lower it further up to 10 % increasing thus disagreement between data and theory. This indicates that three-nucleon forces must provide an even larger increase of the Ay maximum than expected up to now.

قيم البحث

اقرأ أيضاً

The Kohn variational principle and the hyperspherical harmonic technique are applied to study p-3He elastic scattering at low energies. Preliminary results obtained using several interaction models are reported. The calculations are compared to a rec ent phase shift analysis performed at the Triangle University Nuclear Laboratory and to the available experimental data. Using a three-nucleon interaction derived from chiral perturbation theory at N2LO, we have found a noticeable reduction of the discrepancy observed for the A_y observable.
We perform an expansion of the virtual Compton scattering amplitude for low energies and low momenta and show that this expansion covers the transition from the regime to be investigated in the scheduled photon electroproduction experiments to the re al Compton scattering regime. We discuss the relation of the generalized polarizabilities of virtual Compton scattering to the polarizabilities of real Compton scattering.
168 - Ignazio Bombaci 2016
The so called hyperon puzzle, i.e. the difficulty to reconcile the measured masses of neutron stars (NSs) with the presence of hyperons in their interiors, is one of the hot topics in astrophysics which is stimulating copious experimental and theoret ical research in hypernuclear physics. After illustrating the origin of the hyperon puzzle, I discuss some of its possible solutions, and particularly those related to the role of hyperonic two- and three-body interactions on the equation of state of dense matter. Afterward, I discuss a possibility to circumvent the hyperon puzzle allowing for the presence of strangeness in NSs in the form of deconfined strange quark matter, and thus considering the so called quark stars, i.e. hybrid stars or strange stars. Finally I discuss the astrophysical consequences of the possible conversion process of an hadronic star to a quark star.
High $p_T > 10$ GeV elliptic flow, which is experimentally measured via the correlation between soft and hard hadrons, receives competing contributions from event-by-event fluctuations of the low $p_T$ elliptic flow and event plane angle fluctuations in the soft sector. In this paper, a proper account of these event-by-event fluctuations in the soft sector, modeled via viscous hydrodynamics, is combined with a jet energy loss model to reveal that the positive contribution from low $p_T$ $v_2$ fluctuations overwhelms the negative contributions from event plane fluctuations. This leads to an enhancement of high $p_T > 10$ GeV elliptic flow in comparison to previous calculations and provides a natural solution to the decade long high $p_T$ $R_{AA} otimes v_2$ puzzle. We also present the first theoretical calculation of high $p_T$ $v_3$, which is shown to be compatible with current LHC data. Furthermore, we discuss how short wavelength jet-medium physics can be deconvoluted from the physics of soft, bulk event-by-event flow observables using event shape engineering techniques.
We consider a new three-nucleon force generated by the exchange of one pion in the presence of a 2N correlation. The underlying irreducible diagram has been recently suggested by the authors as a possible candidate to explain the puzzle of the vector analyzing powers $A_y$ and $iT_{11}$ for nucleon-deuteron scattering. Herein, we have calculated the elastic neutron-deuteron differential cross section, $A_y$, $iT_{11}$, $T_{20}$, $T_{21}$, and $T_{22}$ below break-up threshold by accurately solving the Alt-Grassberger-Sandhas equations with realistic interactions. We have also studied how $A_y$ evolves below 30 MeV. The results indicate that this new 3NF diagram provides one possible additional contribution, with the correct spin-isospin structure, for the explanation of the origin of this puzzle.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا