ترغب بنشر مسار تعليمي؟ اضغط هنا

High-time Resolution Astrophysics and Pulsars

90   0   0.0 ( 0 )
 نشر من قبل Andy Shearer
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Andy Shearer




اسأل ChatGPT حول البحث

The discovery of pulsars in 1968 heralded an era where the temporal characteristics of detectors had to be reassessed. Up to this point detector integration times would normally be measured in minutes rather seconds and definitely not on sub-second time scales. At the start of the 21st century pulsar observations are still pushing the limits of detector telescope capabilities. Flux variations on times scales less than 1 nsec have been observed during giant radio pulses. Pulsar studies over the next 10 to 20 years will require instruments with time resolutions down to microseconds and below, high-quantum quantum efficiency, reasonable energy resolution and sensitive to circular and linear polarisation of stochastic signals. This chapter is review of temporally resolved optical observations of pulsars. It concludes with estimates of the observability of pulsars with both existing telescopes and into the ELT era.



قيم البحث

اقرأ أيضاً

Electron Multiplying CCDs (EMCCDs) are used much less often than they might be because of the challenges they offer camera designers more comfortable with the design of slow-scan detector systems. However they offer an entirely new range of opportuni ties in astrophysical instrumentation. This paper will show some of the exciting new results obtained with these remarkable devices and talk about their potential in other areas of astrophysical application. We will then describe how they may be operated to give the very best performance at the lowest possible light levels. We will show that clock induced charge may be reduced to negligible levels and that, with care, devices may be clocked at significantly higher speeds than usually achieved. As an example of the advantages offered by these detectors we will show how a multi-detector EMCCD curvature wavefront sensor will revolutionise the sensitivity of adaptive optics instruments and been able to deliver the highest resolution images ever taken in the visible or the near infrared.
We present the discovery of 5 millisecond pulsars found in the mid-Galactic latitude portion of the High Time Resolution Universe (HTRU) Survey. The pulsars have rotational periods from ~2.3 to ~7.5 ms, and all are in binary systems with orbital peri ods ranging from ~0.3 to ~150 d. In four of these systems, the most likely companion is a white dwarf, with minimum masses of ~0.2 Solar Masses. The other pulsar, J1731-1847, has a very low mass companion and exhibits eclipses, and is thus a member of the black widow class of pulsar binaries. These eclipses have been observed in bands centred near frequencies of 700, 1400 and 3000 MHz, from which measurements have been made of the electron density in the eclipse region. These measurements have been used to examine some possible eclipse mechanisms. The eclipse and other properties of this source are used to perform a comparison with the other known eclipsing and black widow pulsars. These new discoveries occupy a short-period and high-dispersion measure (DM) region of parameter space, which we demonstrate is a direct consequence of the high time and frequency resolution of the HTRU survey. The large implied distances to our new discoveries makes observation of their companions unlikely with both current optical telescopes and the Fermi Gamma-ray Space Telescope. The extremely circular orbits make any advance of periastron measurements highly unlikely. No relativistic Shapiro delays are obvious in any of the systems, although the low flux densities would make their detection difficult unless the orbits were fortuitously edge-on.
We present a polarimetric analysis of 49 long-period pulsars discovered as part of the High Time Resolution Universe (HTRU) southern survey. The sources exhibit the typical characteristics of old pulsars, with low fractional linear and circular polar isation and narrow, multicomponent profiles. Although the position angle swings are generally complex, for two of the analysed pulsars (J1622-3751 and J1710-2616) we obtained an indication of the geometry via the rotating vector model. We were able to determine a value of the rotation measure (RM) for 34 of the sources which, when combined with their dispersion measures (DM), yields an integrated magnetic field strength along the line of sight. With the data presented here, the total number of values of RM associated to pulsars discovered during the HTRU southern survey sums to 51. The RMs are not consistent with the hypothesis of a counter-clockwise direction of the Galactic magnetic field within an annulus included between 4 and 6 kpc from the Galactic centre. A partial agreement with a counter-clockwise sense of the Galactic magnetic field within the spiral arms is however found in the area of the Carina-Sagittarius arm.
Aqueye+ is a new ultrafast optical single photon counter, based on single photon avalanche photodiodes (SPAD) and a 4-fold split-pupil concept. It is a completely revisited version of its predecessor, Aqueye, successfully mounted at the 182 cm Copern icus telescope in Asiago. Here we will present the new technological features implemented on Aqueye+, namely a state of the art timing system, a dedicated and optimized optical train, a high sensitivity and high frame rate field camera and remote control, which will give Aqueye plus much superior performances with respect to its predecessor, unparalleled by any other existing fast photometer. The instrument will host also an optical vorticity module to achieve high performance astronomical coronography and a real time acquisition of atmospheric seeing unit. The present paper describes the instrument and its first performances.
We are now in an era where we can image details on the surfaces of stars. When resolving stellar surfaces, we see that every surface is uniquely complicated. Each imaged star provides insight into not only the stellar surface structures, but also the stellar interiors suggesting constraints on evolution and dynamo models. As more resources become operational in the coming years, imaging stellar surfaces should become commonplace for revealing the true nature of stars. Here, we discuss the main types of stars for which imaging surface features is currently useful and what improved observing techniques would provide for imaging stellar surface features.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا