ﻻ يوجد ملخص باللغة العربية
A random matrix model of black holes is given based on analysis of Gaussian complex ensembles, based on the generalization of chRMT of QCD. Spacetime freedoms are incorporated in terms of eigenvalues of the ensemble. Classical observables of black holes can be computed using this model and it satisfies asymptotic freedom and holographic principle.
Given a random walk a method is presented to produce a matrix of transition probabilities that is consistent with that random walk. The method is a kind of reverse application of the usual ergodicity and is tested by using a transition matrix to prod
The relevant physics for the possible formation of black holes in the LHC is discussed.
In this paper, we investigate the thermodynamics of dyonic black holes in the presence of Born-Infeld electromagnetic field. We show that electric-magnetic duality reported for dyonic solutions with Maxwell field is omitted in case of Born-Infeld gen
A quantum equation of gravity is proposed using the geometrical quantization of general relativity. The quantum equation for a black hole is solved using the Wentzel-Kramers-Brillouin (WKB) method. Quantum effects of a Schwarzschild black hole are de
Our study shows that the cross-section for fusion improves considerably if d-d pairs are located in linear (one-dimensional) chainlets or line defects. Such non-equilibrium defects can exist only in a solid matrix. Further, solids harbor lattice vibr