ﻻ يوجد ملخص باللغة العربية
Most supersymmetric models predict new particles within the reach of the next generation of colliders. For an understanding of the model structure and the mechanism(s) of electroweak symmetry breaking, it is important to know the masses of the new particles precisely. The measurement of the mass of the scalar partner of the top quark (stop) at an e+e- collider is studied. A relatively light stop is motivated by attempts to explain electroweak baryogenesis and can play an important role in dark matter annihilation. A method is presented which makes use of cross-section measurements near the pair-production threshold as well as at higher center-of-mass energies. It is shown that this method does not only increase the statistical precision, but also reduces the influence of systematic uncertainties, which can be important. Numerical results are presented, based on a realistic event simulation, for two signal selection strategies: using conventional selection cuts, and using an Iterative Discriminant Analysis (IDA). While the analysis of stops is particularly challenging due to the possibility of stop hadronization and fragmentation, the general procedure could be applied to many precision mass measurements.
We present a precision measurement of the top-quark mass using the full sample of Tevatron $sqrt{s}=1.96$ TeV proton-antiproton collisions collected by the CDF II detector, corresponding to an integrated luminosity of 8.7 $fb^{-1}$. Using a sample of
This note presents an analysis of the potential of future high-energy electron-positron colliders to measure the $b$-quark mass. We perform a full-simulation study of the measurement of the ratio of the three-jet rates in events with $bbar{b}(g)$ and
We present measurements of the top quark mass based on 3.6 fb^-1 of data collected by the D0 experiment during Run II of the Fermilab Tevatron collider. We present results in the dilepton and lepton+jets final states. We also present the measurement
The discovery of the stop - the Supersymmetric partner of the top quark - is a key goal of the physics program enabled by the Large Hadron Collider. Although much of the accessible parameter space has already been probed, all current searches assume
In these proceedings a novel approach to deal with the beam-induced effects in luminosity measurement is presented. Based on the relativistic kinematics of the collision frame of the Bhabha process, the beam-beam related uncertainties can be reduced