ترغب بنشر مسار تعليمي؟ اضغط هنا

Lower bounds for the greatest possible number of colors in interval edge colorings of bipartite cylinders and bipartite tori

57   0   0.0 ( 0 )
 نشر من قبل Petros Petrosyan
 تاريخ النشر 2007
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

An interval edge t-coloring of a graph G is a proper edge coloring of G with colors 1,2...,t such that at least one edge of G is colored by color i,i=1,2...,t, and the edges incident with each vertex v are colored by d_{G}(v) consecutive colors, where d_{G}(v) is the degree of the vertex v in G. In this paper interval edge colorings of bipartite cylinders and bipartite tori are investigated.

قيم البحث

اقرأ أيضاً

An emph{interval $t$-coloring} of a multigraph $G$ is a proper edge coloring with colors $1,dots,t$ such that the colors on the edges incident to every vertex of $G$ are colored by consecutive colors. A emph{cyclic interval $t$-coloring} of a multigr aph $G$ is a proper edge coloring with colors $1,dots,t$ such that the colors on the edges incident to every vertex of $G$ are colored by consecutive colors, under the condition that color $1$ is considered as consecutive to color $t$. Denote by $w(G)$ ($w_{c}(G)$) and $W(G)$ ($W_{c}(G)$) the minimum and maximum number of colors in a (cyclic) interval coloring of a multigraph $G$, respectively. We present some new sharp bounds on $w(G)$ and $W(G)$ for multigraphs $G$ satisfying various conditions. In particular, we show that if $G$ is a $2$-connected multigraph with an interval coloring, then $W(G)leq 1+leftlfloor frac{|V(G)|}{2}rightrfloor(Delta(G)-1)$. We also give several results towards the general conjecture that $W_{c}(G)leq |V(G)|$ for any triangle-free graph $G$ with a cyclic interval coloring; we establish that approximat
An edge-coloring of a graph $G$ with colors $1,2,ldots,t$ is an interval $t$-coloring if all colors are used, and the colors of edges incident to each vertex of $G$ are distinct and form an interval of integers. A graph $G$ is interval colorable if i t has an interval $t$-coloring for some positive integer $t$. For an interval colorable graph $G$, $W(G)$ denotes the greatest value of $t$ for which $G$ has an interval $t$-coloring. It is known that the complete graph is interval colorable if and only if the number of its vertices is even. However, the exact value of $W(K_{2n})$ is known only for $n leq 4$. The second author showed that if $n = p2^q$, where $p$ is odd and $q$ is nonnegative, then $W(K_{2n}) geq 4n-2-p-q$. Later, he conjectured that if $n in mathbb{N}$, then $W(K_{2n}) = 4n - 2 - leftlfloorlog_2{n}rightrfloor - left | n_2 right |$, where $left | n_2 right |$ is the number of $1$s in the binary representation of $n$. In this paper we introduce a new technique to construct interval colorings of complete graphs based on their 1-factorizations, which is used to disprove the conjecture, improve lower and upper bounds on $W(K_{2n})$ and determine its exact values for $n leq 12$.
A $k$-improper edge coloring of a graph $G$ is a mapping $alpha:E(G)longrightarrow mathbb{N}$ such that at most $k$ edges of $G$ with a common endpoint have the same color. An improper edge coloring of a graph $G$ is called an improper interval edge coloring if the colors of the edges incident to each vertex of $G$ form an integral interval. In this paper we introduce and investigate a new notion, the interval coloring impropriety (or just impropriety) of a graph $G$ defined as the smallest $k$ such that $G$ has a $k$-improper interval edge coloring; we denote the smallest such $k$ by $mu_{mathrm{int}}(G)$. We prove upper bounds on $mu_{mathrm{int}}(G)$ for general graphs $G$ and for particular families such as bipartite, complete multipartite and outerplanar graphs; we also determine $mu_{mathrm{int}}(G)$ exactly for $G$ belonging to some particular classes of graphs. Furthermore, we provide several families of graphs with large impropriety; in particular, we prove that for each positive integer $k$, there exists a graph $G$ with $mu_{mathrm{int}}(G) =k$. Finally, for graphs with at least two vertices we prove a new upper bound on the number of colors used in an improper interval edge coloring.
A proper edge-coloring of a graph $G$ with colors $1,ldots,t$ is called an emph{interval cyclic $t$-coloring} if all colors are used, and the edges incident to each vertex $vin V(G)$ are colored by $d_{G}(v)$ consecutive colors modulo $t$, where $d_{ G}(v)$ is the degree of a vertex $v$ in $G$. A graph $G$ is emph{interval cyclically colorable} if it has an interval cyclic $t$-coloring for some positive integer $t$. The set of all interval cyclically colorable graphs is denoted by $mathfrak{N}_{c}$. For a graph $Gin mathfrak{N}_{c}$, the least and the greatest values of $t$ for which it has an interval cyclic $t$-coloring are denoted by $w_{c}(G)$ and $W_{c}(G)$, respectively. In this paper we investigate some properties of interval cyclic colorings. In particular, we prove that if $G$ is a triangle-free graph with at least two vertices and $Gin mathfrak{N}_{c}$, then $W_{c}(G)leq vert V(G)vert +Delta(G)-2$. We also obtain bounds on $w_{c}(G)$ and $W_{c}(G)$ for various classes of graphs. Finally, we give some methods for constructing of interval cyclically non-colorable graphs.
An edge-coloring of a graph $G$ with consecutive integers $c_{1},ldots,c_{t}$ is called an emph{interval $t$-coloring} if all colors are used, and the colors of edges incident to any vertex of $G$ are distinct and form an interval of integers. A grap h $G$ is interval colorable if it has an interval $t$-coloring for some positive integer $t$. The set of all interval colorable graphs is denoted by $mathfrak{N}$. In 2004, Giaro and Kubale showed that if $G,Hin mathfrak{N}$, then the Cartesian product of these graphs belongs to $mathfrak{N}$. In the same year they formulated a similar problem for the composition of graphs as an open problem. Later, in 2009, the first author showed that if $G,Hin mathfrak{N}$ and $H$ is a regular graph, then $G[H]in mathfrak{N}$. In this paper, we prove that if $Gin mathfrak{N}$ and $H$ has an interval coloring of a special type, then $G[H]in mathfrak{N}$. Moreover, we show that all regular graphs, complete bipartite graphs and trees have such a special interval coloring. In particular, this implies that if $Gin mathfrak{N}$ and $T$ is a tree, then $G[T]in mathfrak{N}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا