ﻻ يوجد ملخص باللغة العربية
The ABC effect -- an intriguing low-mass enhancement in the $pipi$ invariant mass spectrum -- is known from inclusive measurements of two-pion production in nuclear fusion reactions. First exclusive measurements carried out at CELSIUS-WASA for the fusion reactions leading to d or $^3$He reveal this effect to be a $sigma$ channel phenomenon associated with the formation of a $DeltaDelta$ system in the intermediate state and combined with a resonance-like behavior in the total cross section. Together with the observation that the differential distributions do not change in shape over the resonance region the features fulfill the criteria of an isoscalar s-channel resonance in $pn$ and $NNpipi$ systems, if the two emitted nucleons are bound. It obviously is robust enough to survive in nuclei as a dibaryonic resonance configuration. In this context also the phenomenon of $NDelta$ resonances is reexamined.
Heavy baryon chiral perturbation theory ($chi$PT), where the $Delta$ resonance is included, is used in order to examine the axial charged-current component of the weak interaction process at low neutrino energies. At leading chiral order the Adler th
We study the production amplitude for the reaction $NNto NNpi$ up to next-to-leading order in chiral perturbation theory. We show that the irreducible chiral loops at this order exactly cancel those terms that arise from the off-shell parts of the $p
Exclusive and kinematically complete measurements of the double pionic fusion to $^3$He have been performed in the energy region of the so-called ABC effect, which denotes a pronounced low-mass enhancement in the $pipi$-invariant mass spectrum. The e
A comparison of the close-to-threshold total cross section for the eta prime production in pp --> pp eta prime and pn --> pn eta prime reactions constitutes a tool to investigate the eta prime meson structure and the reaction mechanism in the channel
The production of eta and eta-prime mesons in nucleon-nucleon collisions near thresholds is considered within a one-boson exchange model. We show the feasibility of an experimental access to transition formfactors.