ﻻ يوجد ملخص باللغة العربية
Despite the efforts of the past decade, the origin of the bimodal horizontal-branch (HB) found in some globular clusters (GCs) remains a conundrum. Inspired by the discovery of multiple stellar populations in the {it most massive} Galactic GC, $omega$ Centauri, we investigate the possibility that two distinct populations may coexist and are responsible for the bimodal HBs in the {it third} and {it fifth} brightest GCs, NGC 6388 and NGC 6441. Using the population synthesis technique, we examine two different chemical ``self-enrichment hypotheses in which a primordial GC was sufficiently massive to contain two or more distinct populations as suggested by the populations found in $omega$ Cen: (1) the age-metallicity relation scenario in which two populations with different metallicity and age coexist, following an internal age-metallicity relation, and (2) the super-helium-rich scenario in which GCs contain a certain fraction of helium-enhanced stars, for instance, the second generation stars formed from the helium-enriched ejecta of the first. The comparative study indicates that the detailed color-magnitude diagram morphologies and the properties of the RR Lyrae variables in NGC 6388 and NGC 6441 support the latter scenario; i.e., the model which assumes a minor fraction ($sim$ 15 %) of helium-excess (Y $simeq$ 0.3) stars. The results suggest that helium content is the main driver behind the HB bimodality found most often in massive GCs. If confirmed, the GC-to-GC variation of helium abundance should be considered a {it local} effect, further supporting the argument that age is the {it global} second parameter of HB morphology.
NGC 6388 and NGC 6441 are two massive Galactic bulge globular clusters which share many properties, including the presence of an extended horizontal branch (HB), quite unexpected because of their high metal content. In this paper we use HSTs WFPC2, A
We present an analysis of FLAMES-Giraffe spectra for several bright giants in NGC 6441, to investigate the presence and extent of the Na-O anticorrelation in this anomalous globular cluster. The field of NGC 6441 is very crowded, with severe contamin
The metal-rich and old bulge globular cluster (GC) NGC 6388 is one of the most massive Galactic GCs (M ~ 10^6 Msun). However, the spectroscopic properties of its multiple stellar populations rested only on 32 red giants (only seven of which observed
We have used multi-band high resolution HST WFPC2 and ACS observations combined with wide field ground-based observations to study the blue straggler star (BSS) population in the galactic globular cluster NGC 6388. As in several other clusters we hav
Observations of the globular clusters NGC 6388 and M 15 were carried out by the H.E.S.S. array of Cherenkov telescopes for a live time of 27.2 and 15.2 hours respectively. No gamma-ray signal is found at the nominal target position of NGC 6388 and M