ترغب بنشر مسار تعليمي؟ اضغط هنا

On the validity of the 5-dimensional Birkhoff theorem: The tale of an exceptional case

68   0   0.0 ( 0 )
 نشر من قبل L\\'aszl\\'o \\'A Gergely
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The 5-dimensional (5d) Birkhoff theorem gives the class of 5d vacuum space-times containing spatial hypersurfaces with cosmological symmetries. This theorem is violated by the 5d vacuum Gergely-Maartens (GM) space-time, which is not a representant of the above class, but contains the static Einstein brane as embedded hypersurface. We prove that the 5d Birkhoff theorem is still satisfied in a weaker sense: the GM space-time is related to the degenerated horizon metric of certain black-hole space-times of the allowed class. This result resembles the connection between the Bertotti-Robinson space-time and the horizon region of the extremal Reissner-Nordstrom space-time in general relativity.



قيم البحث

اقرأ أيضاً

In a previous paper arXiv:0707.2775 [gr-qc] we showed that stationary asymptotically flat vacuum black hole solutions in 5 dimensions with two commuting axial Killing fields can be completely characterized by their mass, angular momentum, a set of re al moduli, and a set of winding numbers. In this paper we generalize our analysis to include Maxwell fields.
Recently, Banados, Silk and West (BSW) showed that the total energy of two colliding test particles has no upper limit in their center of mass frame in the neighborhood of an extreme Kerr black hole, even if these particles were at rest at infinity i n the infinite past. We call this mechanism the BSW mechanism or BSW process. The large energy of such particles would generate strong gravity, although this has not been taken into account in the BSW analysis. A similar mechanism is seen in the collision of two spherical test shells in the neighborhood of an extreme Reissner-Nordstrom black hole. In this paper, in order to draw some implications concerning the effects of gravity generated by colliding particles in the BSW process, we study a collision of two spherical dust shells, since their gravity can be exactly treated. We show that the energy of two colliding shells in the center of mass frame observable from infinity has an upper limit due to their own gravity. Our result suggests that an upper limit also exists for the total energy of colliding particles in the center of mass frame in the observable domain in the BSW process due the gravity of the particles.
Thanks to the release of the extraordinary EHT image of shadow attributed to the M87* supermassive black hole (SMBH), we have a novel window to assess the validity of fundamental physics in the strong-field regime. Motivated by this, we consider Joha nnsen & Psaltis metric parameterized by mass, spin, and an additional dimensionless hair parameter $epsilon$. This parametric framework in the high rotation regimes provides a well-behaved bed to the strong-gravity test of the no-hair theorem (NHT) using the EHT data. Incorporating the $epsilon$ into the standard Kerr spacetime enrich it in the sense that, depending on setting the positive and negative values for that, we deal with alternative compact objects: deformed Kerr naked singularity and Kerr BH solutions, respectively. Shadows associated with these two possible solutions indicate that the deformation parameter $epsilon$ affects the geometry shape of standard shadow such that it becomes more oblate and prolate with $epsilon<0$ and $epsilon>0$, respectively. By scanning the window associated with three shadow observables oblateness, deviation from circularity, and shadow diameter, we perform a numerical analysis within the range $a_*=0.9mp0.1$ of the dimensionless rotation parameter, to find the constraints on the hair parameter $epsilon$ in both possible solutions. For both possible signs of $epsilon$, we extract a variety of upper bounds that are in interplay with $a_*$. Although by approaching the rotation parameters to the extreme limit, the allowable range of both hair parameters becomes narrower, the hairy Kerr BH solution is a more promising candidate to play the role of the alternative compact object instead of the standard Kerr BH. The lack of tension between hairy Kerr BH with the current observation of the EHT shadow of the M87* SMBH carries this message that there is the possibility of NHT violation.
Asymptotic symmetries of theories with gravity in d=2m+2 spacetime dimensions are reconsidered for m>1 in light of recent results concerning d=4 BMS symmetries. Weinbergs soft graviton theorem in 2m+2 dimensions is re-expressed as a Ward identity for the gravitational S-matrix. The corresponding asymptotic symmetries are identified with 2m+2-dimensional supertranslations. An alternate derivation of these asymptotic symmetries as diffeomorphisms which preserve finite-energy boundary conditions at null infinity and act non-trivially on physical data is given. Our results differ from those of previous analyses whose stronger boundary conditions precluded supertranslations for d>4. We find for all even d that supertranslation symmetry is spontaneously broken in the conventional vacuum and identify soft gravitons as the corresponding Goldstone bosons.
We show that two stationary, asymptotically flat vacuum black holes in 5 dimensions with two commuting axial symmetries are identical if and only if their masses, angular momenta, and their ``rod structures coincide. We also show that the horizon mus t be topologically either a 3-sphere, a ring, or a Lens-space. Our argument is a generalization of constructions of Morisawa and Ida (based in turn on key work of Maison) who considered the spherical case, combined with basic arguments concerning the nature of the factor manifold of symmetry orbits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا