ﻻ يوجد ملخص باللغة العربية
The Mach-Zehnder interferometric setup quantitatively characterizing the wave-particle duality implements in fact a joint measurement of two unsharp observables. We present a necessary and sufficient condition for such a pair of unsharp observables to be jointly measurable. The condition is shown to be equivalent to a duality inequality, which for the optimal strategy of extracting the which-path information is more stringent than the Jaeger-Shimony-Vaidman-Englert inequality.
We consider an oscillating micromirror replacing one of the two fixed mirrors of a Mach-Zehnder interferometer. In this ideal optical set-up the quantum oscillator is subjected to the radiation pressure interaction of travelling light waves, no cavit
The scheme of Clauser and Dowling (Phys. Rev. A 53, 4587 (1996)) for factoring $N$ by means of an N-slit interference experiment is translated into an experiment with a single Mach-Zehnder interferometer. With dispersive phase shifters the ratio of t
Possible paths of a photon passing through a nested Mach-Zehnder interferometer on its way to a detector are analyzed using the consistent histories formulation of quantum mechanics, and confirmed using a set of weak measurements (but not weak values
The use of an interferometer to perform an ultra-precise parameter estimation under noisy conditions is a challenging task. Here we discuss nearly optimal measurement schemes for a well known,sensitive input state, squeezed vacuum and coherent light.
In a recent paper, arXiv:1604.04596, Griffiths questioned - based on an informative consistent-histories (CH) argument - the counterfactuality, for one of the bit choices, of Salih et al.s protocol for communicating without sending physical particles