ترغب بنشر مسار تعليمي؟ اضغط هنا

Why are some A stars magnetic, while most are not?

137   0   0.0 ( 0 )
 نشر من قبل Gregg Wade
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A small fraction of intermediate-mass main sequence (A and B type) stars have strong, organised magnetic fields. The large majority of such stars, however, show no evidence for magnetic fields, even when observed with very high precision. In this paper we describe a simple model, motivated by qualitatively new observational results, that provides a natural physical explanation for the small fraction of observed magnetic stars.



قيم البحث

اقرأ أيضاً

Many countries have passed their first COVID-19 epidemic peak. Traditional epidemiological models describe this as a result of non-pharmaceutical interventions that pushed the growth rate below the recovery rate. In this new phase of the pandemic man y countries show an almost linear growth of confirmed cases for extended time-periods. This new containment regime is hard to explain by traditional models where infection numbers either grow explosively until herd immunity is reached, or the epidemic is completely suppressed (zero new cases). Here we offer an explanation of this puzzling observation based on the structure of contact networks. We show that for any given transmission rate there exists a critical number of social contacts, $D_c$, below which linear growth and low infection prevalence must occur. Above $D_c$ traditional epidemiological dynamics takes place, as e.g. in SIR-type models. When calibrating our corresponding model to empirical estimates of the transmission rate and the number of days being contagious, we find $D_csim 7.2$. Assuming realistic contact networks with a degree of about 5, and assuming that lockdown measures would reduce that to household-size (about 2.5), we reproduce actual infection curves with a remarkable precision, without fitting or fine-tuning of parameters. In particular we compare the US and Austria, as examples for one country that initially did not impose measures and one that responded with a severe lockdown early on. Our findings question the applicability of standard compartmental models to describe the COVID-19 containment phase. The probability to observe linear growth in these is practically zero.
A cornerstone of modern polymer physics is the `Flory ideality hypothesis which states that a chain in a polymer melt adopts `ideal random-walk-like conformations. Here we revisit theoretically and numerically this pivotal assumption and demonstrate that there are noticeable deviations from ideality. The deviations come from the interplay of chain connectivity and the incompressibility of the melt, leading to an effective repulsion between chain segments of all sizes $s$. The amplitude of this repulsion increases with decreasing $s$ where chain segments become more and more swollen. We illustrate this swelling by an analysis of the form factor $F(q)$, i.e. the scattered intensity at wavevector $q$ resulting from intramolecular interferences of a chain. A `Kratky plot of $q^2F(q)$ {em vs.} $q$ does not exhibit the plateau for intermediate wavevectors characteristic of ideal chains. One rather finds a conspicuous depression of the plateau, $delta(F^{-1}(q)) = |q|^3/32rho$, which increases with $q$ and only depends on the monomer density $rho$.
Theoretically long gamma-ray bursts (GRBs) are expected to happen in low-metallicity environments, because in a single massive star scenario, low iron abundance prevents loss of angular momentum through stellar wind, resulting in ultra-relativistic j ets and the burst. In this sense, not just a simple metallicity measurement but also low iron abundance ([Fe/H]<-1.0) is essentially important. Observationally, however, oxygen abundance has been measured more often due to stronger emission. In terms of oxygen abundance, some GRBs have been reported to be hosted by high-metallicity star-forming galaxies, in tension with theoretical predictions. Here we compare iron and oxygen abundances for the first time for GRB host galaxies (GRB 980425 and 080517) based on the emission-line diagnostics. The estimated total iron abundances, including iron in both gas and dust, are well below the solar value. The total iron abundances can be explained by the typical value of theoretical predictions ([Fe/H]<-1.0), despite high oxygen abundance in one of them. According to our iron abundance measurements, the single massive star scenario still survives even if the oxygen abundance of the host is very high, such as the solar value. Relying only on oxygen abundance could mislead us on the origin of the GRBs. The measured oxygen-to-iron ratios, [O/Fe], can be comparable to the highest values among the iron-measured galaxies in the Sloan Digital Sky Survey. Possible theoretical explanations of such high [O/Fe] include the young age of the hosts, top-heavy initial mass function, and fallback mechanism of the iron element in supernova explosions.
129 - Sean M. Carroll 2017
Some modern cosmological models predict the appearance of Boltzmann Brains: observers who randomly fluctuate out of a thermal bath rather than naturally evolving from a low-entropy Big Bang. A theory in which most observers are of the Boltzmann Brain type is generally thought to be unacceptable, although opinions differ. I argue that such theories are indeed unacceptable: the real problem is with fluctuations into observers who are locally identical to ordinary observers, and their existence cannot be swept under the rug by a choice of probability distributions over observers. The issue is not that the existence of such observers is ruled out by data, but that the theories that predict them are cognitively unstable: they cannot simultaneously be true and justifiably believed.
There are two puzzles surrounding the Pleiades, or Seven Sisters. First, why are the mythological stories surrounding them, typically involving seven young girls being chased by a man associated with the constellation Orion, so similar in vastly sepa rated cultures, such as the Australian Aboriginal cultures and Greek mythology? Second, why do most cultures call them Seven Sisters even though most people with good eyesight see only six stars? Here we show that both these puzzles may be explained by a combination of the great antiquity of the stories combined with the proper motion of the stars, and that these stories may predate the departure of most modern humans out of Africa around 100,000 BC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا