ترغب بنشر مسار تعليمي؟ اضغط هنا

On cyclic fixed points of spectra

177   0   0.0 ( 0 )
 نشر من قبل John Rognes
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For a finite p-group G and a bounded below G-spectrum X of finite type mod p, the G-equivariant Segal conjecture for X asserts that the canonical map X^G --> X^{hG} is a p-adic equivalence. Let C_{p^n} be the cyclic group of order p^n. We show that if the C_p Segal conjecture holds for a C_{p^n} spectrum X, as well as for each of its C_{p^e} geometric fixed points for 0 < e < n, then then C_{p^n} Segal conjecture holds for X. Similar results hold for weaker forms of the Segal conjecture, asking only that the canonical map induces an equivalence in sufficiently high degrees, on homotopy groups with suitable finite coefficients.



قيم البحث

اقرأ أيضاً

For a profinite group $G$, let $(text{-})^{hG}$, $(text{-})^{h_dG}$, and $(text{-})^{hG}$ denote continuous homotopy fixed points for profinite $G$-spectra, discrete $G$-spectra, and continuous $G$-spectra (coming from towers of discrete $G$-spectra) , respectively. We establish some connections between the first two notions, and by using Postnikov towers, for $K vartriangleleft_c G$ (a closed normal subgroup), give various conditions for when the iterated homotopy fixed points $(X^{hK})^{hG/K}$ exist and are $X^{hG}$. For the Lubin-Tate spectrum $E_n$ and $G <_c G_n$, the extended Morava stabilizer group, our results show that $E_n^{hK}$ is a profinite $G/K$-spectrum with $(E_n^{hK})^{hG/K} simeq E_n^{hG}$, by an argument that possesses a certain technical simplicity not enjoyed by either the proof that $(E_n^{hK})^{hG/K} simeq E_n^{hG}$ or the Devinatz-Hopkins proof (which requires $|G/K| < infty$) of $(E_n^{dhK})^{h_dG/K} simeq E_n^{dhG}$, where $E_n^{dhK}$ is a construction that behaves like continuous homotopy fixed points. Also, we prove that (in general) the $G/K$-homotopy fixed point spectral sequence for $pi_ast((E_n^{hK})^{hG/K})$, with $E_2^{s,t} = H^s_c(G/K; pi_t(E_n^{hK}))$ (continuous cohomology), is isomorphic to both the strongly convergent Lyndon-Hochschild-Serre spectral sequence of Devinatz for $pi_ast(E_n^{dhG})$, with $E_2^{s,t} = H^s_c(G/K; pi_t(E_n^{dhK}))$, and the descent spectral sequence for $pi_ast((E_n^{hK})^{hG/K})$.
220 - Daniel G. Davis 2013
If K is a discrete group and Z is a K-spectrum, then the homotopy fixed point spectrum Z^{hK} is Map_*(EK_+, Z)^K, the fixed points of a familiar expression. Similarly, if G is a profinite group and X is a discrete G-spectrum, then X^{hG} is often gi ven by (H_{G,X})^G, where H_{G,X} is a certain explicit construction given by a homotopy limit in the category of discrete G-spectra. Thus, in each of two common equivariant settings, the homotopy fixed point spectrum is equal to the fixed points of an explicit object in the ambient equivariant category. We enrich this pattern by proving in a precise sense that the discrete G-spectrum H_{G,X} is just a profinite version of Map_*(EK_+, Z): at each stage of its construction, H_{G,X} replicates in the setting of discrete G-spectra the corresponding stage in the formation of Map_*(EK_+, Z) (up to a certain natural identification).
We introduce a computationally tractable way to describe the $mathbb Z$-homotopy fixed points of a $C_{n}$-spectrum $E$, producing a genuine $C_{n}$ spectrum $E^{hnmathbb Z}$ whose fixed and homotopy fixed points agree and are the $mathbb Z$-homotopy fixed points of $E$. These form a piece of a contravariant functor from the divisor poset of $n$ to genuine $C_{n}$-spectra, and when $E$ is an $N_{infty}$-ring spectrum, this functor lifts to a functor of $N_{infty}$-ring spectra. For spectra like the Real Johnson--Wilson theories or the norms of Real bordism, the slice spectral sequence provides a way to easily compute the $RO(G)$-graded homotopy groups of the spectrum $E^{hnmathbb Z}$, giving the homotopy groups of the $mathbb Z$-homotopy fixed points. For the more general spectra in the contravariant functor, the slice spectral sequences interpolate between the one for the norm of Real bordism and the especially simple $mathbb Z$-homotopy fixed point case, giving us a family of new tools to simplify slice computations.
167 - Daniel A. Ramras 2015
We give a new description of Rosenthals generalized homotopy fixed point spaces as homotopy limits over the orbit category. This is achieved using a simple categorical model for classifying spaces with respect to families of subgroups.
Let E be a k-local profinite G-Galois extension of an E_infty-ring spectrum A (in the sense of Rognes). We show that E may be regarded as producing a discrete G-spectrum. Also, we prove that if E is a profaithful k-local profinite extension which sat isfies certain extra conditions, then the forward direction of Rogness Galois correspondence extends to the profinite setting. We show the function spectrum F_A((E^hH)_k, (E^hK)_k) is equivalent to the homotopy fixed point spectrum ((E[[G/H]])^hK)_k where H and K are closed subgroups of G. Applications to Morava E-theory are given, including showing that the homotopy fixed points defined by Devinatz and Hopkins for closed subgroups of the extended Morava stabilizer group agree with those defined with respect to a continuous action and in terms of the derived functor of fixed points.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا