ترغب بنشر مسار تعليمي؟ اضغط هنا

Q value of the 100Mo Double-Beta Decay

58   0   0.0 ( 0 )
 نشر من قبل Saidur Rahaman
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Penning trap measurements using mixed beams of 100Mo - 100Ru and 76Ge - 76Se have been utilized to determine the double-beta decay Q-values of 100Mo and 76Ge with uncertainties less than 200 eV. The value for 76Ge, 2039.04(16) keV is in agreement with the published SMILETRAP value. The new value for 100Mo, 3034.40(17) keV is 30 times more precise than the previous literature value, sufficient for the ongoing neutrinoless double-beta decay searches in 100Mo. Moreover, the precise Q-value is used to calculate the phase-space integrals and the experimental nuclear matrix element of double-beta decay.

قيم البحث

اقرأ أيضاً

74 - T. Eronen 2005
Masses of the radioactive isotopes 62Ga, 62Zn and 62Cu have been measured at the JYFLTRAP facility with a relative precision of better than 18 ppb. A Q_EC value of (9181.07 +- 0.54) keV for the superallowed decay of 62Ga is obtained from the measured cyclotron frequency ratios of 62Ga-62Zn, 62Ga-62Ni and 62Zn-62Ni ions. The resulting Ft-value supports the validity of the conserved vector current hypothesis (CVC). The mass excess values measured were (-51986.5 +-1.0) keV for 62Ga, (-61167.9 +- 0.9) keV for 62Zn and (-62787.2 +- 0.9) keV for 62Cu.
151 - R.Arnold , C.Augier , J.Baker 2006
The double beta decay of 100Mo to the 0^+_1 and 2^+_1 excited states of 100Ru is studied using the NEMO 3 data. After the analysis of 8024 h of data the half-life for the two-neutrino double beta decay of 100Mo to the excited 0^+_1 state is measured to be T^(2nu)_1/2 = [5.7^{+1.3}_{-0.9}(stat)+/-0.8(syst)]x 10^20 y. The signal-to-background ratio is equal to 3. Information about energy and angular distributions of emitted electrons is also obtained. No evidence for neutrinoless double beta decay to the excited 0^+_1 state has been found. The corresponding half-life limit is T^(0nu)_1/2(0^+ --> 0^+_1) > 8.9 x 10^22 y (at 90% C.L.). The search for the double beta decay to the 2^+_1 excited state has allowed the determination of limits on the half-life for the two neutrino mode T^(2nu)_1/2(0^+ --> 2^+_1) > 1.1 x 10^21 y (at 90% C.L.) and for the neutrinoless mode T^(0nu)_1/2(0^+ --> 2^+_1) > 1.6 x 10^23 y (at 90% C.L.).
Background: The understanding and description of forbidden decays provides interesting challenges for nuclear theory. These calculations could help to test underlying nuclear models and interpret experimental data. Purpose: Compare a direct measureme nt of the $^{138}$La $beta$-decay $Q$ value with the $beta$-decay spectrum end-point energy measured by Quarati et al. using LaBr$_3$ detectors [Appl. Radiat. Isot. 108, 30 (2016)]. Use new precise measurements of the $^{138}$La $beta$-decay and electron capture (EC) $Q$ values to improve theoretical calculations of the $beta$-decay spectrum and EC probabilities. Method: High-precision Penning trap mass spectrometry was used to measure cyclotron frequency ratios of $^{138}$La, $^{138}$Ce and $^{138}$Ba ions from which $beta$-decay and EC $Q$ values for $^{138}$La were obtained. Results: The $^{138}$La $beta$-decay and EC $Q$ values were measured to be $Q$ = 1052.42(41) keV and $Q_{EC}$ = 1748.41(34) keV, improving the precision compared to the values obtained in the most recent atomic mass evaluation [Wang, et al., Chin. Phys. C 41, 030003 (2017)] by an order of magnitude. These results are used for improved calculations of the $^{138}$La $beta$-decay shape factor and EC probabilities. New determinations for the $^{138}$Ce 2EC $Q$ value and the atomic masses of $^{138}$La, $^{138}$Ce, and $^{138}$Ba are also reported. Conclusion: The $^{138}$La $beta$-decay $Q$ value measured by Quarati et al. is in excellent agreement with our new result, which is an order of magnitude more precise. Uncertainties in the shape factor calculations for $^{138}$La beta-decay using our new $Q$ value are reduced by an order of magnitude. Uncertainties in the EC probability ratios are also reduced and show improved agreement with experimental data.
We report a direct measurement of the Q-value of the neutrinoless double-beta-decay candidate 48Ca at the TITAN Penning-trap mass spectrometer, with the result that Q = 4267.98(32) keV. We measured the masses of both the mother and daughter nuclides, and in the latter case found a 1 keV deviation from the literature value. In addition to the Q-value, we also present results of a new calculation of the neutrinoless double-beta-decay nuclear matrix element of 48Ca. Using diagrammatic many-body perturbation theory to second order to account for physics outside the valence space, we constructed an effective shell-model double-beta-decay operator, which increased the nuclear matrix element by about 75% compared with that produced by the bare operator. The new Q-value and matrix element strengthen the case for a 48Ca double-beta-decay experiment.
$^{48}$Ca, the lightest double beta decay candidate, is the only one simple enough to be treated exactly in the nuclear shell model. Thus, the $betabeta(2 u)$ half-life measurement, reported here, provides a unique test of the nuclear physics involve d in the $betabeta$ matrix element calculation. Enriched $^{48}$Ca sources of two different thicknesses have been exposed in a time projection chamber, and yield T$_{1/2}^{2 u} = (4.3^{+2.4}_{-1.1} [{rm stat.}] pm 1.4 [{rm syst.}]) times 10^{19}$ years, compatible with the shell model calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا