ﻻ يوجد ملخص باللغة العربية
We present a joint weak lensing and X-ray analysis of 4 deg$^2$ from the CFHTLS and XMM-LSS surveys. Our weak lensing analysis is the first analysis of a real survey using shapelets, a new generation weak lensing analysis method. We create projected mass maps of the images, and extract 6 weak-lensing-detected clusters of galaxies. We show that their counts can be used to constrain the power spectrum normalisation $sigma_8 =0.92_{-0.30}^{+0.26}$ for $Omega_m=0.24$. We show that despite the large scatter generally observed in the M-T relation derived from lensing masses, tight constraints on both its slope and normalisation $M_*$ can be obtained with a moderate number of sources provided that the covered mass range is large enough. Adding clusters from Bardeau et al. (2007) to our sample, we measure $M_* = 2.71_{-0.61}^{+0.79} 10^{14} h^{-1} M_odot$. Although they are dominated by shot noise and sample variance, our measurements are consistent with currently favoured values, and set the stage for future surveys. We thus investigate the dependence of those estimates on survey size, depth, and integration time, for joint weak lensing and X-ray surveys. We show that deep surveys should be dedicated to the study of the physics of clusters and groups of galaxies. For a given exposure time, wide surveys provide a larger number of detected clusters and are therefore preferred for the measurement of cosmological parameters such as $sigma_8$ and $M_*$. We show that a wide survey of a few hundred square degrees is needed to improve upon current measurements of these parameters. More ambitious surveys covering 7000 deg$^2$ will provide the 1% accuracy in the estimation of the power spectrum and the M-T relation normalisations.
We study degeneracies between cosmological parameters and measurement errors from cosmic shear surveys using a principal component analysis of the Fisher matrix. We simulate realistic survey topologies with non-uniform sky coverage, and quantify the
We study the estimators of various second-order weak lensing statistics such as the shear correlation functions xi_pm and the aperture mass dispersion <M_ap^2> which can directly be constructed from weak lensing shear maps. We compare the efficiency
We provide a new framework for the joint analysis of cluster observations (JACO) using simultaneous fits to X-ray, Sunyaev-Zeldovich (SZ), and weak lensing data. Our method fits the mass models simultaneously to all data, provides explicit separation
Weak gravitational lensing is one of the key probes of the cosmological model, dark energy, and dark matter, providing insight into both the cosmic expansion history and large scale structure growth history. Taking into account a broad spectrum of ph
We present a novel approach for a combined analysis of X-ray and gravitational lensing data and apply this technique to the merging galaxy cluster MACS J0416.1$-$2403. The method exploits the information on the intracluster gas distribution that come