ﻻ يوجد ملخص باللغة العربية
Dark energy is inferred from a Hubble expansion which is slower at epochs which are earlier than ours. But evidence reviewed here shows $H_0$ for nearby galaxies is actually less than currently adopted and would instead require {it deceleration} to reach the current value. Distances of Cepheid variables in galaxies in the Local Supercluster have been measured by the Hubble Space Telescope and it is argued here that they require a low value of $H_0$ along with redshifts which are at least partly intrinsic. The intrinsic component is hypothesized to be a result of the particle masses increasing with time. The same considerations apply to Dark Matter. But with particle masses growing with time, the condensation from plasmoid to proto galaxy not only does away with the need for unseen ``dark matter but also explains the intrinsic (non-velocity) redshifts of younger matter.
We investigate a generalized form of the phenomenologically emergent dark energy model, known as generalized emergent dark energy (GEDE), introduced by Li and Shafieloo [Astrophys. J. {bf 902}, 58 (2020)] in light of a series of cosmological probes a
Holographic dark energy (HDE) describes the vacuum energy in a cosmic IR region whose total energy saturates the limit of avoiding the collapse into a black hole. HDE predicts that the dark energy equation of the state transiting from greater than th
Joint analysis of Cosmic Microwave Background, Baryon Acoustic Oscillation, and supernova data has enabled precision estimation of cosmological parameters. New programs will push to 1% uncertainty in the dark energy equation of state and tightened co
I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individu
In this paper we fit two models of Early Dark Energy (EDE) (an increase in the expansion rate before recombination) to the combination of Atacama Space Telescope (ACT) measurements of the Cosmic Microwave Background (CMB) with data from either the WM