ﻻ يوجد ملخص باللغة العربية
Homogeneity and isotropy of the universe at sufficiently large scales is a fundamental premise on which modern cosmology is based. Fractal dimensions of matter distribution is a parameter that can be used to test the hypothesis of homogeneity. In this method, galaxies are used as tracers of the distribution of matter and samples derived from various galaxy redshift surveys have been used to determine the scale of homogeneity in the Universe. Ideally, for homogeneity, the distribution should be a mono-fractal with the fractal dimension equal to the ambient dimension. While this ideal definition is true for infinitely large point sets, this may not be realised as in practice, we have only a finite point set. The correct benchmark for realistic data sets is a homogeneous distribution of a finite number of points and this should be used in place of the mathematically defined fractal dimension for infinite number of points (D) as a requirement for approach towards homogeneity. We derive the expected fractal dimension for a homogeneous distribution of a finite number of points. We show that for sufficiently large data sets the expected fractal dimension approaches D in absence of clustering. It is also important to take the weak, but non-zero amplitude of clustering at very large scales into account. In this paper we also compute the expected fractal dimension for a finite point set that is weakly clustered. Clustering introduces departures in the Fractal dimensions from D and in most situations the departures are small if the amplitude of clustering is small. Features in the two point correlation function, like those introduced by Baryon Acoustic Oscillations (BAO) can lead to non-trivial variations in the Fractal dimensions where the amplitude of clustering and deviations from D are no longer related in a monotonic manner.
We investigated numerically the distribution of participation numbers in the 3d Anderson tight-binding model at the localization-delocalization threshold. These numbers in {em one} disordered system experience strong level-to-level fluctuations in a
The structure of the large scale distribution of the galaxies have been widely studied since the publication of the first catalogs. Since large redshift samples are available, their analyses seem to show fractal correlations up to the observational l
The assumption that the Universe, on sufficiently large scales, is homogeneous and isotropic is crucial to our current understanding of cosmology. In this paper we test if the observed galaxy distribution is actually homogeneous on large scales. We h
We present a review of the history and the present state of the fractal approach to the large-scale distribution of galaxies. Angular correlation function was used as a general instrument for the structure analysis. It was realized later that a norma
The theory of zeta functions of fractal strings has been initiated by the first author in the early 1990s, and developed jointly with his collaborators during almost two decades of intensive research in numerous articles and several monographs. In 20