ترغب بنشر مسار تعليمي؟ اضغط هنا

The impact of the 18F(a,p)21Ne reaction on asymptotic giant branch nucleosynthesis

120   0   0.0 ( 0 )
 نشر من قبل Amanda Karakas
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Amanda Karakas




اسأل ChatGPT حول البحث

We present detailed models of low and intermediate-mass asymptotic giant branch (AGB) stars with and without the 18F(a,p)21Ne reaction included in the nuclear network, where the rate for this reaction has been recently experimentally evaluated for the first time. The lower and recommended measured rates for this reaction produce negligible changes to the stellar yields, whereas the upper limit of the rate affects the production of 19F and 21Ne. The stellar yields increase by ~50% to up to a factor of 4.5 for 19F, and by factors of ~2 to 9.6 for 21Ne. While the 18}F(a,p)21Ne reaction competes with 18O production, the extra protons released are captured by 18O to facilitate the 18O(p,a)15N(a,g)19F chain. The higher abundances of 19F obtained using the upper limit of the rate helps to match the [F/O] ratios observed in AGB stars, but only for large C/O ratios. Extra-mixing processes are proposed to help to solve this problem. Some evidence that the 18F(a,p)21Ne rate might be closer to its upper limit is provided by the fact that the higher calculated 21Ne/22Ne ratios in the He intershell provide an explanation for the Ne isotopic composition of silicon-carbide grains from AGB stars. This needs to be confirmed by future experiments of the 18F(a,p)21Ne reaction rate. The availability of accurate fluorine yields from AGB stars will be fundamental for interpreting observations of this element in carbon-enhanced metal-poor stars.



قيم البحث

اقرأ أيضاً

The recent experimental evaluation of the 18F(a,p)21Ne reaction rate, when considering its associated uncertainties, presented significant differences compared to the theoretical Hauser-Feshbach rate. This was most apparent at the low temperatures re levant for He-shell burning in asymptotic giant branch (AGB) stars. Investigations into the effect on AGB nucleosynthesis revealed that the upper limit resulted in an enhanced production of 19F and 21Ne in carbon-rich AGB models, but the recommended and lower limits presented no differences from using the theoretical rate. This was the case for models spanning a range in metallicity from solar to [Fe/H] ~ -2.3. The results of this study are relevant for observations of F and C-enriched AGB stars in the Galaxy, and to the Ne composition of mainstream silicon carbide grains, that supposedly formed in the outflows of cool, carbon-rich giant stars. We discuss the mechanism that produces the extra F and summarize our main findings.
There is now strong evidence that some stars have been born with He mass fractions as high as $Y approx 0.40$ (e.g., in $omega$ Centauri). However, the advanced evolution, chemical yields, and final fates of He-rich stars are largely unexplored. We i nvestigate the consequences of He-enhancement on the evolution and nucleosynthesis of intermediate-mass asymptotic giant branch (AGB) models of 3, 4, 5, and 6 M$_odot$ with a metallicity of $Z = 0.0006$ ([Fe/H] $approx -1.4$). We compare models with He-enhanced compositions ($Y=0.30, 0.35, 0.40$) to those with primordial He ($Y=0.24$). We find that the minimum initial mass for C burning and super-AGB stars with CO(Ne) or ONe cores decreases from above our highest mass of 6 M$_odot$ to $sim$ 4-5 M$_odot$ with $Y=0.40$. We also model the production of trans-Fe elements via the slow neutron-capture process (s-process). He-enhancement substantially reduces the third dredge-up efficiency and the stellar yields of s-process elements (e.g., 90% less Ba for 6 M$_odot$, $Y=0.40$). An exception occurs for 3 M$_odot$, where the near-doubling in the number of thermal pulses with $Y=0.40$ leads to $sim$ 50% higher yields of Ba-peak elements and Pb if the $^{13}$C neutron source is included. However, the thinner intershell and increased temperatures at the base of the convective envelope with $Y=0.40$ probably inhibit the $^{13}$C neutron source at this mass. Future chemical evolution models with our yields might explain the evolution of s-process elements among He-rich stars in $omega$ Centauri.
We present stellar evolutionary tracks and nucleosynthetic predictions for a grid of stellar models of low- and intermediate-mass asymptotic giant branch (AGB) stars at $Z=0.001$ ([Fe/H]$=-1.2$). The models cover an initial mass range from 1 M$_{odot }$ to 7 M$_{odot}$. Final surface abundances and stellar yields are calculated for all elements from hydrogen to bismuth as well as isotopes up to the iron group. We present the first study of neutron-capture nucleosynthesis in intermediate-mass AGB models, including a super-AGB model, of [Fe/H] = $-1.2$. We examine in detail a low-mass AGB model of 2 M$_{odot}$ where the $^{13}$C($alpha$,$n$)$^{16}$O reaction is the main source of neutrons. We also examine an intermediate-mass AGB model of 5 M$_{odot}$ where intershell temperatures are high enough to activate the $^{22}$Ne neutron source, which produces high neutron densities up to $sim 10^{14}$ n cm$^{-3}$. Hot bottom burning is activated in models with $M geq 3$ M$_{odot}$. With the 3 M$_{odot}$ model we investigate the effect of varying the extent in mass of the region where protons are mixed from the envelope into the intershell at the deepest extent of each third dredge-up. We compare the results of the low-mass models to three post-AGB stars with a metallicity of [Fe/H] $simeq -1.2$. The composition is a good match to the predicted neutron-capture abundances except for Pb and we confirm that the observed Pb abundances are lower than what is calculated by AGB models.
The $ u p$ process appears in proton-rich, hot matter which is expanding in a neutrino wind and may be realised in explosive environments such as core-collapse supernovae or in outflows from accretion disks. The impact of uncertainties in nuclear rea ction cross sections on the finally produced abundances has been studied by applying Monte Carlo variation of all astrophysical reaction rates in a large reaction network. As the detailed astrophysical conditions of the $ u p$ process still are unknown, a parameter study was performed, with 23 trajectories covering a large range of entropies and $Y_mathrm{e}$. The resulting abundance uncertainties are given for each trajectory. The $ u p$ process has been speculated to contribute to the light $p$ nuclides but it was not possible so far to reproduce the solar isotope ratios. It is found that it is possible to reproduce the solar $^{92}$Mo/$^{94}$Mo abundance ratio within nuclear uncertainties, even within a single trajectory. The solar values of the abundances in the Kr-Sr region relative to the Mo region, however, cannot be achieved within a single trajectory. They may still be obtained from a weighted superposition of different trajectories, though, depending on the actual conditions in the production site. For a stronger constraint of the required conditions, it would be necessary to reduce the uncertainties in the 3$alpha$ and $^{56}$Ni(n,p)$^{56}$Co rates at temperatures $T>3$ GK.
Low mass Asymptotic Giant Branch stars are among the most important polluters of the interstellar medium. In their interiors, the main component (A>90) of the slow neutron capture process (the s-process) is synthesized, the most important neutron sou rce being the 13C(alpha,n)16O reaction. In this paper we review its current experimental status discussing possible future synergies between some experiments currently focused on the determination of its rate. Moreover, in order to determine the level of precision needed to fully characterize this reaction, we present a theoretical sensitivity study, carried out with the FUNS evolutionary stellar code and the NEWTON post-process code. We modify the rate up to a factor of two with respect to a reference case. We find that variations of the 13C(alpha,n)16O rate do not appreciably affect s-process distributions for masses above 3 Msun at any metallicity. Apart from a few isotopes, in fact, the differences are always below 5%. The situation is completely different if some 13C burns in a convective environment: this occurs in FUNS models with M<3 Msun at solar-like metallicities. In this case, a change of the 13C(alpha,n)16O reaction rate leads to non-negligible variations of the elements Surface distribution (10% on average), with larger peaks for some elements (as rubidium) and for neutron-rich isotopes (as 86Kr and 96Zr). Larger variations are found in low-mass low-metallicity models, if protons are mixed and burnt at very high temperatures. In this case, the surface abundances of the heavier elements may vary by more than a factor 50.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا