ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin tunneling in junctions with disordered ferromagnets

99   0   0.0 ( 0 )
 نشر من قبل Paresh Paluskar
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide compelling evidence to establish that, contrary to ones elementary guess, the tunneling spin polarization (TSP) of amorphous CoFeB is larger than that of highly textured fcc CoFeB. First principles atomic and electronic structure calculations reveal striking agreement between the measured TSP and the predicted s-electron spin polarization. Given the disordered structure of the ternary alloy, not only do these results strongly endorse our communal understanding of tunneling through AlOx, but they also portray the key concepts that demand primary consideration in such complex systems.

قيم البحث

اقرأ أيضاً

We have studied the magnetoresistance (TMR) of tunnel junctions with electrodes of La2/3Sr1/3MnO3 and we show how the variation of the conductance and TMR with the bias voltage can be exploited to obtain a precise information on the spin and energy d ependence of the density of states. Our analysis leads to a quantitative description of the band structure of La2/3Sr1/3MnO3 and allows the determination of the gap delta between the Fermi level and the bottom of the t2g minority spin band, in good agreement with data from spin-polarized inverse photoemission experiments. This shows the potential of magnetic tunnel junctions with half-metallic electrodes for spin-resolved spectroscopic studies.
Using theoretical arguments, we show that, in order to exploit half-metallic ferromagnets in tunneling magnetoresistance (TMR) junctions, it is crucial to eliminate interface states at the Fermi level within the half-metallic gap; contrary to this, n o such problem arises in giant magnetoresistance elements. Moreover, based on an a priori understanding of the electronic structure, we propose an antiferromagnetically coupled TMR element, in which interface states are eliminated, as a paradigm of materials design from first principles. Our conclusions are supported by ab-initio calculations.
Non-coplanar spin textures with scalar spin chirality can generate effective magnetic field that deflects the motion of charge carriers, resulting in topological Hall effect (THE), a powerful probe of the ground state and low-energy excitations of co rrelated systems. However, spin chirality fluctuation in two-dimensional ferromagnets with perpendicular anisotropy has not been considered in prior studies. Herein, we report direct evidence of universal spin chirality fluctuation by probing the THE above the transition temperatures in two different ferromagnetic ultra-thin films, SrRuO$_3$ and V doped Sb$_2$Te$_3$. The temperature, magnetic field, thickness, and carrier type dependences of the THE signal, along with our Monte-Carlo simulations, unambiguously demonstrate that the spin chirality fluctuation is a universal phenomenon in two-dimensional Ising ferromagnets. Our discovery opens a new paradigm of exploring the spin chirality with topological Hall transport in two-dimensional magnets and beyond
Magnetite (Fe3O4) based tunnel junctions with turret/mesa structure have been investigated for different barrier materials (SrTiO3, NdGaO3, MgO, SiO2, and Al2O(3-x)). Junctions with a Ni counter electrode and an aluminium oxide barrier showed reprodu cibly a tunneling magnetoresistance (TMR) effect at room temperature of up to 5% with almost ideal switching behavior. This number only partially reflects the intrinsic high spin polarization of Fe3O4. It is considerably decreased due to an additional series resistance within the junction. Only SiO2 and Al2O(3-x) barriers provide magnetically decoupled electrodes as necessary for sharp switching. The observed decrease of the TMR effect as a function of increasing temperature is due to a decrease in spin polarization and an increase in spin-scattering in the barrier. Among the oxide half-metals magnetite has the potential to enhance the performance of TMR based devices.
The transport properties of magnetic tunnel junctions (MTJs) are very sensitive to interface modifications. In this work we investigate both experimentally and theoretically the effect of asymmetric barrier modifications on the bias dependence of tun neling magnetoresistance (TMR) in single crystal Fe/MgO-based MTJs with (i) one crystalline and one rough interface and (ii) with a monolayer of O deposited at the crystalline interface. In both cases we observe an asymmetric bias dependence of TMR and a reversal of its sign at large bias. We propose a general model to explain the bias dependence in these and similar systems reported earlier. The model predicts the existence of two distinct TMR regimes: (i) tunneling regime when the interface is modified with layers of a different insulator and (ii) resonant regime when thin metallic layers are inserted at the interface. We demonstrate that in the tunneling regime negative TMR is due to the high voltage which overcomes the exchange splitting in the electrodes, while the asymmetric bias dependence of TMR is due to the interface transmission probabilities. In the resonant regime inversion of TMR could happen at zero voltage depending on the alignment of the resonance levels with the Fermi surfaces of the electrodes. Moreover, the model predicts a regime in which TMR has different sign at positive and negative bias suggesting possibilities of combining memory with logic functions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا