ﻻ يوجد ملخص باللغة العربية
We define degeneracy loci for vector bundles with structure group $G_2$, and give formulas for their cohomology (or Chow) classes in terms of the Chern classes of the bundles involved. When the base is a point, such formulas are part of the theory for rational homogeneous spaces developed by Bernstein-Gelfand-Gelfand and Demazure. This has been extended to the setting of general algebraic geometry by Giambelli-Thom-Porteous, Kempf-Laksov, and Fulton in classical types; the present work carries out the analogous program in type $G_2$. We include explicit descriptions of the $G_2$ flag variety and its Schubert varieties, and several computations, including one that answers a question of W. Graham. In appendices, we collect some facts from representation theory and compute the Chow rings of quadric bundles, clarifying a previous computation of Edidin and Graham.
In previous work, we employed a geometric method of Kazarian to prove Pfaffian formulas for a certain class of degeneracy loci in types B, C, and D. Here we refine that approach to obtain formulas for more general loci, including those coming from al
Using raising operators and geometric arguments, we establish formulas for the K-theory classes of degeneracy loci in classical types. We also find new determinantal and Pfaffian expressions for classical cases considered by Giambelli: the loci where
We discuss a relationship between Chern-Schwartz-MacPherson classes for Schubert cells in flag manifolds, Fomin-Kirillov algebra, and the generalized nil-Hecke algebra. We show that nonnegativity conjecture in Fomin-Kirillov algebra implies the nonne
Let G be a split, simple, simply connected, algebraic group over Q. The degree 4, weight 2 motivic cohomology group of the classifying space BG of G is identified with Z. We construct cocycles representing the generator of this group, known as the se
We give a short and self-contained proof of the Decomposition Theorem for the non-small resolution of a Special Schubert variety. We also provide an explicit description of the perverse cohomology sheaves. As a by-product of our approach, we obtain a