ترغب بنشر مسار تعليمي؟ اضغط هنا

Spitzer IRS Observations of Class I/II Objects in Taurus: Composition and Thermal History of the Circumstellar Ices

109   0   0.0 ( 0 )
 نشر من قبل Gail Zasowski
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present observations of Taurus-Auriga Class I/II protostars obtained with the Spitzer InfraRed Spectrograph. Detailed spectral fits to the 6 and 15 micron features are made, using publicly-available laboratory data, to constrain the molecular composition, abundances, and levels of thermal processing along the lines of sight. We provide an inventory of the molecular environments observed, which have an average composition dominated by water ice with ~12% CO_2 (abundance relative to H_2O), >~2-9% CH_3OH, <~14% NH_3, ~4% CH_4, ~2% H_2CO, ~0.6% HCOOH, and ~0.5% SO_2. We find CO_2/H_2O ratios nearly equivalent to those observed in cold clouds and lines of sight toward the galactic center. The unidentified 6.8 micron profiles vary from source to source, and it is shown to be likely that even combinations of the most common candidates (NH_4+ and CH_3OH) are inadequate to explain the feature fully. We discuss correlations among SED spectral indices, abundance ratios, and thermally-processed ice fractions and their implications for CO_2 formation and evolution. Comparison of our spectral fits with cold molecular cloud sight-lines indicates abundant prestellar ice environments made even richer by the radiative effects of protostars. Our results add additional constraints and a finer level of detail to current full-scale models of protostellar and protoplanetary systems.



قيم البحث

اقرأ أيضاً

214 - E. Furlan 2007
We present Spitzer Infrared Spectrograph spectra of 28 Class I protostars in the Taurus star-forming region. The 5 to 36 micron spectra reveal excess emission from the inner regions of the envelope and accretion disk surrounding these predecessors of low-mass stars, as well as absorption features due to silicates and ices. Together with shorter- and longer-wavelength data from the literature, we construct spectral energy distributions and fit envelope models to 22 protostars of our sample, most of which are well-constrained due to the availability of the IRS spectra. We infer that the envelopes of the Class I objects in our sample cover a wide range in parameter space, particularly in density and centrifugal radius, implying different initial conditions for the collapse of protostellar cores.
84 - C. Dang-Duc , N. Phan-Bao 2017
We report our study of two proto-brown dwarf candidates in Taurus, [GKH94]~41 and IRAS~04191+1523B. Based on continuum maps at 102~GHz (or 2.9~mm), spectral types and the spectral energy distribution of both targets, we confirmed the class I evolutio nary stage of [GKH94]~41 and IRAS~04191+1523B, and estimated the upper limit to the final masses to be 49$^{+56}_{-27}$~$M_{rm J}$ and 75$^{+40}_{-26}$~$M_{rm J}$ for [GKH94]~41 and IRAS~04191+1523B, respectively. This indicates that they will likely end up as brown dwarfs or very low-mass stars. The existence of these class I very low-mass objects strongly supports the scenario that brown dwarfs and very low-mass stars have the same formation stages as low-mass stars.
114 - Harry I. Teplitz 2010
We present Spitzer 16 micron imaging of the Great Observatories Origins Deep Survey (GOODS) fields. We survey 150 square arcminutes in each of the two GOODS fields (North and South), to an average 3 sigma depth of 40 and 65 micro-Jy respectively. We detect about 1300 sources in both fields combined. We validate the photometry using the 3-24 micron spectral energy distribution of stars in the fields compared to Spitzer spectroscopic templates. Comparison with ISOCAM and AKARI observations in the same fields show reasonable agreement, though the uncertainties are large. We provide a catalog of photometry, with sources cross correlated with available Spitzer, Chandra, and HST data. Galaxy number counts show good agreement with previous results from ISOCAM and AKARI, with improved uncertainties. We examine the 16 to 24 micron flux ratio and find that for most sources it lies within the expected locus for starbursts and infrared luminous galaxies. A color cut of S_{16}/S_{24}>1.4 selects mostly sources which lie at 1.1<z<1.6, where the 24 micron passband contains both the redshifted 9.7 micron silicate absorption and the minimum between PAH emission peaks. We measure the integrated galaxy light of 16 micron sources, and find a lower limit on the galaxy contribution to the extragalactic background light at this wavelength to be 2.2pm 0.2$ nW m^{-2} sr^{-1}.
55 - A.C.A. Boogert 2002
A (sub-)millimeter line and continuum study of the class I protostar Elias 29 in the Rho Ophiuchi molecular cloud is presented, whose goals are to understand the nature of this source, and to locate the ices that are abundantly present along this lin e of sight. Within 15-60 beams, several different components contribute to the line emission. Two different foreground clouds are detected, an envelope/disk system and a dense ridge of HCO+ rich material. The latter two components are spatially separated in millimeter interferometer maps. We analyze the envelope/disk system by using inside-out collapse and flared disk models. The disk is in a relatively face-on orientation (<60 degrees), which explains many of the remarkable observational features of Elias 29, such as its flat SED, its brightness in the near infrared, the extended components found in speckle interferometry observations, and its high velocity molecular outflow. It cannot account for the ices seen along the line of sight, however. A small fraction of the ices is present in a (remnant) envelope of mass 0.12-0.33 Msun, but most of the ices (~70%) are present in cool (T<40 K) quiescent foreground clouds. This explains the observed absence of thermally processed ices (crystallized H2O) toward Elias 29. Nevertheless, the temperatures could be sufficiently high to account for the low abundance of apolar (CO, N2, O2) ices. This work shows that it is crucial to obtain spectrally and spatially resolved information from single-dish and interferometric molecular gas observations in order to determine the nature of protostars and to interpret infrared ISO satellite observations of ices and silicates along a pencil beam.
We present a study of the stellar and circumstellar properties of Class I sources using low-resolution (R~1000) near-infrared K- and L-band spectroscopy. We measure prominent spectral lines and features in 8 objects and use fits to standard star spec tra to determine spectral types, visual extinctions, K-band excesses, and water ice optical depths. Four of the seven systems studied are close binary pairs; only one of these systems, Haro 6-10, was angularly resolvab le. For certain stars some properties found in our analysis differ substantially from published values; we analyze the origin of these differences. We determine extinction to each source using three different methods and compare and discuss the resulting values. One hypothesis that we were testing, that extinction dominates over the K-band excess in obscuration of the stellar photospheric absorption lines, appears not to be true. Accretion luminosities and mass accretion rates calculated for our targets are highly uncertain, in part the result of our inexact knowledge of extinction. For the six targets we were able to place on an H-R diagram, our age estimates, <2 Myr, are somewhat younger than those from comparable studies. Our results underscore the value of low-resolution spectroscopy in the study of protostars and their environments; however, the optimal approach to the study of Class I sources likely involves a combination of high- and low-resolution near-infrared, mid-infrared, and millimeter wavelength observations. Accurate and precise measurements of extinction in Class I protostars will be key to improving our understanding of these objects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا