ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparative Direct Analysis of Type Ia Supernova Spectra. IV. Postmaximum

146   0   0.0 ( 0 )
 نشر من قبل David Branch
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A comparative study of optical spectra of Type Ia supernovae (SNe Ia) obtained near 1 week, 3 weeks, and 3 months after maximum light is presented. Most members of the four groups that were defined on the basis of maximum light spectra in Paper II (core normal, broad line, cool, and shallow silicon) develop highly homogeneous postmaximum spectra, although there are interesting exceptions. Comparisons with SYNOW synthetic spectra show that most of the spectral features can be accounted for in a plausible way. The fits show that 3 months after maximum light, when SN Ia spectra are often said to be in the nebular phase and to consist of forbidden emission lines, the spectra actually remain dominated by resonance scattering features of permitted lines, primarily those of Fe II. Even in SN 1991bg, which is said to have made a very early transition to the nebular phase, there is no need to appeal to forbidden lines at 3 weeks postmaximum, and at 3 months postmaximum the only clear identification of a forbidden line is [Ca II] 7291, 7324. Recent studies of SN Ia rates indicate that most of the SNe Ia that have ever occurred have been prompt SNe Ia, produced by young (100,000,000 yr) stellar populations, while most of the SNe Ia that occur at low redshift today are tardy, produced by an older (several Gyrs) population. We suggest that the shallow silicon SNe Ia tend to be the prompt ones.



قيم البحث

اقرأ أيضاً

The Type Ia SN 2000cx exhibited multiple peculiarities, including a lopsided B-band light-curve peak that does not conform to current methods for using shapes of light curves to standardize SN Ia luminosities. We use the parameterized supernova synth etic-spectrum code SYNOW to study line identifications in the photospheric-phase spectra of SN 2000cx. Previous work established the presence of Ca II infrared-triplet features forming above velocity about 20,000 km/s, much higher than the photospheric velocity of about 10,000 km/s. We find Ti II features forming at the same high velocity. High-velocity line formation is partly responsible for the photometric peculiarities of SN 2000cx: for example, B-band flux blocking by Ti II absorption features that decreases with time causes the B light curve to rise more rapidly and decline more slowly than it otherwise would. SN 2000cx contains an absorption feature near 4530 A that may be H-beta, forming at the same high velocity. The lack of conspicuous H-alpha and P-alpha signatures does not necessarily invalidate the H-beta identification if the high-velocity line formation is confined to a clump that partly covers the photosphere and the H-alpha and P-alpha source functions are elevated relative to that of resonance scattering. The H-beta identification is tentative. If it is correct, the high-velocity matter must have come from a nondegenerate companion star.
107 - Brandon Doull , E. Baron 2011
Spectroscopic analyses of Type Ia supernovae have shown there exist four spectroscopic groups---cools, broad line, shallow silicon, and core normal---defined by the widths of the Si II features at 5972 Angstroms and 6355 Angstroms. 1991bg-likes are c lassified as cools. Cools are dim, undergo a rapid decline in luminosity, and produce significantly less nickel than normal Type Ia supernovae. They also have an unusually deep and wide trough in their spectra around 4200 Angstroms and a relatively strong Si II absorption attributed to the line at 5972 Angstroms. We examine the spectra of supernova (SN) 1991bg and the cools SN 1997cn, SN 1999by, and SN 2005bl using the highly parameterized synthetic spectrum code SYNOW, and find general agreement with similar spectroscopic studies. Our analysis reveals that this group of supernovae is fairly homogeneous, with many of the blue spectral features well fit by Fe II. The nature of the spectroscopic commonalities and the variations in the class are discussed. Finally, we examine intermediates such as SN 2004eo and discuss the spectroscopic subgroup distribution of Type Ia supernovae.
99 - J. Millard , D. Branch , E. Baron 1999
Synthetic spectra generated with the parameterized supernova synthetic-spectrum code SYNOW are compared to observed photospheric-phase spectra of the Type Ic supernova 1994I. The observed optical spectra can be well matched by synthetic spectra that are based on the assumption of spherical symmetry. We consider the identification of the infrared absorption feature observed near 10,250 AA, which previously has been attributed to He I $lambda10830$ and regarded as strong evidence that SN 1994I ejected some helium. We have difficulty accounting for the infrared absorption with He I alone. It could be a blend of He I and C I lines. Alternatively, we find that it can be fit by Si I lines without compromising the fit in the optical region. In synthetic spectra that match the observed spectra, from 4 days before to 26 days after the time of maximum brightness, the adopted velocity at the photosphere decreases from 17,500 to 7000 kms. Simple estimates of the kinetic energy carried by the ejected mass give values that are near the canonical supernova energy of $10^{51}$ ergs. The velocities and kinetic energies that we find for SN 1994I in this way are much lower than those that we find elsewhere for the peculiar Type Ic SNe 1997ef and 1998bw, which therefore appear to have been hyper-energetic.
We develop a new framework for use in exploring Type Ia Supernova (SN Ia) spectra. Combining Principal Component Analysis (PCA) and Partial Least Square analysis (PLS) we are able to establish correlations between the Principal Components (PCs) and s pectroscopic/photometric SNe Ia features. The technique was applied to ~120 supernova and ~800 spectra from the Nearby Supernova Factory. The ability of PCA to group together SNe Ia with similar spectral features, already explored in previous studies, is greatly enhanced by two important modifications: (1) the initial data matrix is built using derivatives of spectra over the wavelength, which increases the weight of weak lines and discards extinction, and (2) we extract time evolution information through the use of entire spectral sequences concatenated in each line of the input data matrix. These allow us to define a stable PC parameter space which can be used to characterize synthetic SN Ia spectra by means of real SN features. Using PLS, we demonstrate that the information from important previously known spectral indicators (namely the pseudo-equivalent width (pEW) of Si II 5972 / Si II 6355 and the line velocity of S II 5640 / Si II 6355) at a given epoch, is contained within the PC space and can be determined through a linear combination of the most important PCs. We also show that the PC space encompasses photometric features like B or V magnitudes, B-V color and SALT2 parameters c and x1. The observed colors and magnitudes, that are heavily affected by extinction, cannot be reconstructed using this technique alone. All the above mentioned applications allowed us to construct a metric space for comparing synthetic SN Ia spectra with observations.
In this work we analyse late-time (t > 100 d) optical spectra of low-redshift (z < 0.1) Type Ia supernovae (SNe Ia) which come mostly from the Berkeley Supernova Ia Program dataset. We also present spectra of SN 2011by for the first time. The BSNIP s ample studied consists of 34 SNe Ia with 60 nebular spectra, to which we add nebular spectral feature measurements of 20 SNe Ia from previously published work (Maeda et al. 2011; Blondin et al. 2012), representing the largest set of late-time SN Ia spectra ever analysed. The full width at half-maximum intensity (FWHM) and velocities of the [Fe III] {lambda}4701, [Fe II] {lambda}7155, and [Ni II] {lambda}7378 emission features are measured in most observations of spectroscopically normal objects where the data have signal-to-noise ratios >20 px^-1 and are older than 160 d past maximum brightness. The velocities of all three features are seen to be relatively constant with time, increasing only a few to ~20 km/s/d. The nebular velocity (v_neb, calculated by taking the average of the [Fe II] {lambda}7155 and [Ni II] {lambda}7378 velocities) is correlated with the near-maximum-brightness velocity gradient and early-time ejecta velocity. Nearly all high velocity gradient objects have redshifted nebular lines while most low velocity gradient objects have blueshifted nebular lines. No correlation is found between v_neb and {Delta}m_15(B), and for a given light-curve shape there is a large range of observed nebular velocities. The data also indicate a correlation between observed (B-V)_max and v_neb.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا