ﻻ يوجد ملخص باللغة العربية
Let $f$ be the gluing map of a Heegaard splitting of a 3-manifold $W$. The goal of this paper is to determine the information about $W$ contained in the image of $f$ under the symplectic representation of the mapping class group. We prove three main results. First, we show that the first homology group of the three manifold together with Seiferts linking form provides a complete set of stable invariants. Second, we give a complete, computable set of invariants for these linking forms. Third, we show that a slight augmentation of Birmans determinantal invariant for a Heegaard splitting gives a complete set of unstable invariants.
We construct a sequence of pairs of 3-manifolds each with torus boundary and with the following two properties: 1) For the result of a carefully chosen glueing of the nth pair of 3-manifolds along their boundary tori, the ratio of the genus of the
Let M be a totally orientable graph manifold with characteristic submanifold T and let M = V cup_S W be a Heegaard splitting. We prove that S is standard. In particular, S is the amalgamation of strongly irreducible Heegaard splittings. The splitting
We use Heegaard splittings to give a criterion for a tunnel number one knot manifold to be non-fibered and to have large cyclic covers. We also show that such a knot manifold (satisfying the criterion) admits infinitely many virtually Haken Dehn fill
This article studies the abelian analytic torsion on a closed, oriented, Sasakian three-manifold and identifies this quantity as a specific multiple of the natural unit symplectic volume form on the moduli space of flat abelian connections. This iden
Let $G$ be a finite group. We will say that $M$ and $S$ form a textsl{complete splitting} (textsl{splitting}) of $G$ if every element (nonzero element) $g$ of $G$ has a unique representation of the form $g=ms$ with $min M$ and $sin S$, and $0$ has a