ﻻ يوجد ملخص باللغة العربية
Stability of dark solitons generated by a supersonic flow of Bose-Einstein condensate past an obstacle is investigated. It is shown that in the reference frame attached to the obstacle a transition occurs at some critical value of the flow velocity from absolute instability of dark solitons to their convective instability. This leads to decay of disturbances of solitons at fixed distance from the obstacle and formation of effectively stable dark solitons. This phenomenon explains surprising stability of the flow picture that has been observed in numerical simulations.
Generation of wave structures by a two-dimensional object (laser beam) moving in a two-dimensional two-component Bose-Einstein condensate with a velocity greater than both sound velocities of the mixture is studied by means of analytical methods and
We study the flow of a spinor (F=1) Bose-Einstein condensate in the presence of an obstacle. We consider the cases of ferromagnetic and polar spin-dependent interactions and find that the system demonstrates two speeds of sound that are identified an
We investigate the flow of a one-dimensional nonlinear Schrodinger model with periodic boundary conditions past an obstacle, motivated by recent experiments with Bose--Einstein condensates in ring traps. Above certain rotation velocities, localized s
Formation of stationary 3D wave patterns generated by a small point-like impurity moving through a Bose-Einstein condensate with supersonic velocity is studied. Asymptotic formulae for a stationary far-field density distribution are obtained. Compari
The stability of dark solitons generated by a supersonic flow of a Bose-Einstein condensate past a concave corner (or a wedge) is studied. It is shown that solitons in the dispersive shock wave generated at the initial moment of time demonstrate a sn