ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum dot defined in two-dimensional electron gas at n-AlGaAs/GaAs heterojunction: simulation of electrostatic potential and charging properties

295   0   0.0 ( 0 )
 نشر من قبل Bartlomiej Szafran
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a self-consistent Schroedinger-Poisson scheme for simulation of electrostatic quantum dots defined in gated two-dimensional electron gas formed at n-AlGaAs/GaAs heterojunction. The computational method is applied to a quantitative description of transport properties studied experimentally by Elzermann et al. [Appl. Phys. Lett. {bf 84}, 4617 (2004)]. The three-dimensional model describes the electrostatics of the entire device with a quantum dot that changes shape and floats inside a gated region when the applied voltages are varied. Our approach accounts for the metal electrodes of arbitrary geometry and configuration, includes magnetic field applied perpendicular to the growth direction, electron-electron correlation in the confined electron system and its interaction with the electron reservoir surrounding the quantum dot. We calculate the electric field, the space charge distribution as well as energies and wave functions of confined electrons to describe opening of two transport channels between the reservoir and the confined charge puddle. We determine the voltages for charging the dot with up to 4 electrons. The results are in a qualitative and quantitative agreement with the experimental data.



قيم البحث

اقرأ أيضاً

Quantum dot lattices (QDLs) have the potential to allow for the tailoring of optical, magnetic and electronic properties of a user-defined artificial solid. We use a dual gated device structure to controllably tune the potential landscape in a GaAs/A lGaAs two-dimensional electron gas, thereby enabling the formation of a periodic QDL. The current-voltage characteristics, I(V), follow a power law, as expected for a QDL. In addition, a systematic study of the scaling behavior of I(V) allows us to probe the effects of background disorder on transport through the QDL. Our results are particularly important for semiconductor-based QDL architectures which aim to probe collective phenomena.
We investigated the spin dynamics of two-dimensional electrons in (001) GaAs/AlGaAs heterostructure using the time resolved Kerr rotation technique under a transverse magnetic field. The in-plane spin lifetime is found to be anisotropic below 150k du e to the interference of Rashba and Dresselhaus spin-orbit coupling and Dyakonov-Perel spin relaxation. The ratio of in-plane spin lifetimes is measured directly as a function of temperature and pump power, showing that the electron density in 2DEG channel strongly affects the Rashba spin-orbit coupling.
A metal-insulator transition in two-dimensional electron gases at B=0 is found in Ga(Al)As heterostructures, where a high density of self-assembled InAs quantum dots is incorporated just 3 nm below the heterointerface. The transition occurs at resist ances around h/e^2 and critical carrier densities of 1.2 10^11cm^-2. Effects of electron-electron interactions are expected to be rather weak in our samples, while disorder plays a crucial role.
We study the spin dynamics in a high-mobility two-dimensional electron gas confined in a GaAs/AlGaAs quantum well. An unusual magnetic field dependence of the spin relaxation is found: as the magnetic field becomes stronger, the spin relaxation time first increases quadratically but then changes to a linear dependence, before it eventually becomes oscillatory, whereby the longitudinal and transverse times reach maximal values at even and odd filling Landau level factors, respectively. We show that the suppression of spin relaxation is due to the effect of electron gyration on the spin-orbit field, while the oscillations correspond to oscillations of the density of states appearing at low temperatures and high magnetic fields. The transition from quadratic to linear dependence can be related to a transition from classical to Bohm diffusion and reflects an anomalous behavior of the two-dimensional electron gas analogous to that observed in magnetized plasmas.
102 - H. Kiyama , K. Yoshimi , T. Kato 2021
We report the preparation and readout of multielectron high-spin states, a three-electron quartet, and a four-electron quintet, in a gate-defined GaAs/AlGaAs single quantum dot using spin filtering by quantum Hall edge states coupled to the dot. The readout scheme consists of mapping from multielectron to two-electron spin states and a subsequent two-electron spin readout, thus obviating the need to resolve dense multielectron energy levels. Using this technique, we measure the relaxations of the high-spin states and find them to be an order of magnitude faster than those of low-spin states. Numerical calculations of spin relaxation rates using the exact diagonalization method agree with the experiment. The technique developed here offers a new tool for the study and application of high-spin states in quantum dots.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا