ﻻ يوجد ملخص باللغة العربية
A discussion of epitaxial growth is presented for those situations (OMVPE, CBE, ALE, MOMBE, GSMBE, etc.) when the kinetics of surface processes associated with molecular precursors may be rate limiting. Emphasis is placed on the identification of various {it characteristic length scales} associated with the surface processes. Study of the relative magnitudes of these lengths permits one to identify regimes of qualitatively different growth kinetics as a function of temperature and deposition flux. The approach is illustrated with a simple model which takes account of deposition, diffusion, desorption, dissociation, and step incorporation of a single precursor species, as well as the usual processes of atomic diffusion and step incorporation. Experimental implications are discussed in some detail.
We report the use of a surfactant molecule during the epitaxy of graphene on SiC(0001) that leads to the growth in an unconventional orientation, namely $R0^circ$ rotation with respect to the SiC lattice. It yields a very high-quality single-layer gr
Ultrathin semiconductors present various novel electronic properties. The first experimental realized two-dimensional (2D) material is graphene. Searching 2D materials with heavy elements bring the attention to Si, Ge and Sn. 2D buckled Si-based sili
We demonstrate locally coherent heteroepitaxial growth of silicon carbide (SiC) on diamond, a result contrary to current understanding of heterojunctions as the lattice mismatch exceeds $20%$. High-resolution transmission electron microscopy (HRTEM)
A detailed review of the literature for the last 5-10 years on epitaxial growth of graphene is presented. Both experimental and theoretical aspects related to growth on transition metals and on silicon carbide are thoroughly reviewed. Thermodynamic a
In this work, we report on the epitaxial growth of multiferroic YMnO3 on GaN. Both materials are hexagonal with a nominal lattice mismatch of 4%, yet x-ray diffraction reveals an unexpected 30 degree rotation between the unit cells of YMnO3 and GaN t