ﻻ يوجد ملخص باللغة العربية
Non-equilibrium processes following the irradiation of atomic clusters with short pulses of vacuum ultraviolet radiation are modelled using kinetic Boltzmann equations. The dependence of the ionization dynamics on the cluster size is investigated. The predictions on: (i) the maximal and average ion charge created, (ii) ion charge state distribution, (iii) average energy absorbed per atom, (iv) spatial charge distribution, and (v) thermalization scales are obtained for spherical xenon clusters containing: 20, 70, 2500 and 90000 atoms. These clusters were exposed to single rectangular pulses of vacuum ultraviolet radiation of various pulse intensities, I ~ 10^{12}-10^{14} W/cm^2 and durations < 50 fs, at a fixed integrated radiation flux of F=0.4 J/cm^2. The results obtained are found to be in good agreement with the available experimental data, especially the dependence on the cluster size, if it is assumed that the ions from the positively charged outer layer of the cluster constitute the dominant contribution to the experimentally measured ion charge state distribution.
The kinetic Boltzmann equation is used to model the non-equilibrium ionization phase that initiates the evolution of atomic clusters irradiated with single pulses of intense vacuum ultraviolet radiation. The duration of the pulses is < 50 fs and thei
Kinetic Boltzmann equations are used to model the ionization and expansion dynamics of xenon clusters irradiated with short intense VUV pulses. This unified model includes predominant interactions that contribute to the cluster dynamics induced by th
In this letter we report on an experimental study of high harmonic radiation generated in nanometer-scale foil targets irradiated under normal incidence. The experiments constitute the first unambiguous observation of odd-numbered relativistic harmon
We investigate bulk ion heating in solid buried layer targets irradiated by ultra-short laser pulses of relativistic intensities using particle-in-cell simulations. Our study focuses on a CD2-Al-CD2 sandwich target geometry. We find enhanced deuteron
An intense, short laser pulse incident on a transparent dielectric can excite electrons from valence to the conduction band. As these electrons undergo scattering, both from phonons and ions, they emit bremsstrahlung radiation. Here we present a theo