ﻻ يوجد ملخص باللغة العربية
We present a statistical-mechanical analysis of the positioning of nucleosomes along one of the chromosomes of yeast DNA as a function of the strength of the binding potential and of the chemical potential of the nucleosomes. We find a significant density of two-level nucleosome switching regions where, as a function of the chemical potential, the nucleosome distribution undergoes a micro first-order transition. The location of these nucleosome switches shows a strong correlation with the location of transcription-factor binding sites.
The positions of nucleosomes in eukaryotic genomes determine which parts of the DNA sequence are readily accessible for regulatory proteins and which are not. Genome-wide maps of nucleosome positions have revealed a salient pattern around transcripti
DNA is a flexible molecule, but the degree of its flexibility is subject to debate. The commonly-accepted persistence length of $l_p approx 500,$AA is inconsistent with recent studies on short-chain DNA that show much greater flexibility but do not p
Cells are known to utilize biochemical noise to probabilistically switch between distinct gene expression states. We demonstrate that such noise-driven switching is dominated by tails of probability distributions and is therefore exponentially sensit
We study electronic transport in long DNA chains using the tight-binding approach for a ladder-like model of DNA. We find insulating behavior with localizaton lengths xi ~ 25 in units of average base-pair seperation. Furthermore, we observe small, bu
A method for estimating the cross-correlation $C_{xy}(tau)$ of long-range correlated series $x(t)$ and $y(t)$, at varying lags $tau$ and scales $n$, is proposed. For fractional Brownian motions with Hurst exponents $H_1$ and $H_2$, the asymptotic exp