ترغب بنشر مسار تعليمي؟ اضغط هنا

Ram pressure stripping of disc galaxies orbiting in clusters. II. Galactic wakes

213   0   0.0 ( 0 )
 نشر من قبل Elke Roediger
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present 3D hydrodynamical simulations of ram pressure stripping of a disc galaxy orbiting in a galaxy cluster. In this paper, we focus on the properties of the galaxies tails of stripped gas. The galactic wakes show a flaring width, where the flaring angle depends on the gas discs cross-section with respect to the galaxys direction of motion. The velocity in the wakes shows a significant turbulent component of a few 100 km/s. The stripped gas is deposited in the cluster rather locally, i.e. within ~150 kpc from where it was stripped. We demonstrate that the most important quantity governing the tail density, length and gas mass distribution along the orbit is the galaxys mass loss per orbital length. This in turn depends on the ram pressure as well as the galaxys orbital velocity. For a sensitivity limit of ~10^19 cm^-2 in projected gas density, we find typical tail lengths of 40 kpc. Such long tails are seen even at large distances (0.5 to 1 Mpc) from the cluster centre. At this sensitivity limit, the tails show little flaring, but a width similar to the gas discs size. Morphologically, we find good agreement with the HI tails observed in the Virgo cluster by Chung et al. (2007). However, the observed tails show a much smaller velocity width than predicted from the simulation. The few known X-ray and H$alpha$ tails are generally much narrower and much straighter than the tails in our simulations. Thus, additional physics like a viscous ICM, the influence of cooling and tidal effects may be needed to explain the details of the observations. We discuss the hydrodynamical drag as a heat source for the ICM but conclude that it is not likely to play an important role, especially not in stopping cooling flows.

قيم البحث

اقرأ أيضاً

We present the first 3D hydrodynamical simulations of ram pressure stripping of a disc galaxy orbiting in a galaxy cluster. Along the orbit, the ram pressure that this galaxy experiences varies with time. In this paper, we focus on the evolution of t he radius and mass of the remaining gas disc and compare it with the classical analytical estimate proposed by Gunn & Gott 1972. We find that this simple estimate works well in predicting the evolution of the radius of the remaining gas disc. Only if the ram pressure increases faster than the stripping timescale, the disc radius remains larger than predicted. However, orbits with such short ram pressure peaks are unlikely to occur in other than compact clusters. Unlike the radius evolution, the mass loss history for the galaxy is not accurately described by the analytical estimate. Generally, in the simulations the galaxy loses its gas more slowly than predicted.
106 - Mario G. Abadi 1999
We use 3-dimensional SPH/N-BODY simulations to study ram pressure stripping of gas from spiral galaxies orbiting in clusters. We find that the analytic expectation of Gunn & Gott (1972) relating the gravitational restoring force provided by the disk to the ram pressure force, provides a good approximation to the radius that gas will be stripped from a galaxy. However, at small radii it is also important to consider the potential provided by the bulge component. A spiral galaxy passing through the core of a rich cluster such as Coma, will have its gaseous disk truncated to $sim 4$ kpc, thus losing $sim 80%$ of its diffuse gas mass. The timescale for this to occur is a fraction of a crossing time $sim 10^7$ years. Galaxies orbiting within poorer clusters, or inclined to the direction of motion through the intra-cluster medium will lose significantly less gas. We conclude that ram-pressure alone is insufficient to account for the rapid and widespread truncation of star-formation observed in cluster galaxies, or the morphological transformation of Sabs to S0s that is necessary to explain the Butcher-Oemler effect.
Numerous examples of ram pressure stripping in galaxy clusters are present in literature; however, substantially less work has been focused on ram pressure stripping in lower mass groups. In this work we use the LOFAR Two-metre Sky Survey (LoTSS) to search for jellyfish galaxies in ~500 SDSS groups (z<0.05), making this the most comprehensive search for ram pressure stripping in groups to date. We identify 60 jellyfish galaxies in groups with extended, asymmetric radio continuum tails, which are found across the entire range of group mass from $10^{12.5} < M_mathrm{group} < 10^{14},h^{-1},mathrm{M_odot}$. We compare the group jellyfish galaxies identified in this work with the LoTSS jellyfish galaxies in clusters presented in Roberts et al. (2021), allowing us to compare the effects of ram pressure stripping across three decades in group/cluster mass. We find that jellyfish galaxies are most commonly found in clusters, with the frequency decreasing towards the lowest mass groups. Both the orientation of observed radio continuum tails, and the positions of group jellyfish galaxies in phase space, suggest that galaxies are stripped more slowly in groups relative to clusters. Finally, we find that the star formation rates of jellyfish galaxies in groups are consistent with `normal star-forming group galaxies, which is in contrast to cluster jellyfish galaxies that have clearly enhanced star formation rates. On the whole, there is clear evidence for ongoing ram pressure stripping in galaxy groups (down to very low group masses), though the frequency of jellyfish galaxies and the strength of ram pressure stripping appears smaller in groups than clusters. Differences in the efficiency of ram pressure stripping in groups versus clusters likely contributes to the positive trend between quenched fraction and host halo mass observed in the local Universe.
90 - E. Roediger 2009
While galaxies move through the intracluster medium of their host cluster, they experience a ram pressure which removes at least a significant part of their interstellar medium. This ram pressure stripping appears to be especially important for spira l galaxies: this scenario is a good candidate to explain the differences observed between cluster spirals in the nearby universe and their field counterparts. Thus, ram pressure stripping of disk galaxies in clusters has been studied intensively during the last decade. I review advances made in this area, concentrating on theoretical work, but continuously comparing to observations.
We investigate the effects of magnetic fields and turbulence on ram pressure stripping in elliptical galaxies using ideal magnetohydrodynamics simulations. We consider weakly-magnetised interstellar medium (ISM) characterised by subsonic turbulence, and two orientations of the magnetic fields in the intracluster medium (ICM) - parallel and perpendicular to the direction of the galaxy motion through the ICM. While the stronger turbulence enhances the ram pressure stripping mass loss, the magnetic fields tend to suppress the stripping rates, and the suppression is stronger for parallel fields. However, the effect of magnetic fields on the mass stripping rate is mild. Nevertheless, the morphology of the stripping tails depends significantly on the direction of the ICM magnetic field. The effect of the magnetic field geometry on the tail morphology is much stronger than that of the level of the ISM turbulence. The tail has a highly collimated shape for parallel fields, while it has a sheet-like morphology in the plane of the ICM magnetic field for perpendicular fields. The magnetic field in the tail is amplified irrespectively of the orientation of the ICM field. More strongly magnetised regions in the ram pressure stripping tails are expected to have systematically higher metallicity due to the strong concentration of the stripped ISM than the less magnetised regions. Strong dependence of the morphology of the stripped ISM on the magnetic field could potentially be used to constrain the relative orientation of the ram pressure direction and the dominant component of the ICM magnetic field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا