ﻻ يوجد ملخص باللغة العربية
We present 3D hydrodynamical simulations of ram pressure stripping of a disc galaxy orbiting in a galaxy cluster. In this paper, we focus on the properties of the galaxies tails of stripped gas. The galactic wakes show a flaring width, where the flaring angle depends on the gas discs cross-section with respect to the galaxys direction of motion. The velocity in the wakes shows a significant turbulent component of a few 100 km/s. The stripped gas is deposited in the cluster rather locally, i.e. within ~150 kpc from where it was stripped. We demonstrate that the most important quantity governing the tail density, length and gas mass distribution along the orbit is the galaxys mass loss per orbital length. This in turn depends on the ram pressure as well as the galaxys orbital velocity. For a sensitivity limit of ~10^19 cm^-2 in projected gas density, we find typical tail lengths of 40 kpc. Such long tails are seen even at large distances (0.5 to 1 Mpc) from the cluster centre. At this sensitivity limit, the tails show little flaring, but a width similar to the gas discs size. Morphologically, we find good agreement with the HI tails observed in the Virgo cluster by Chung et al. (2007). However, the observed tails show a much smaller velocity width than predicted from the simulation. The few known X-ray and H$alpha$ tails are generally much narrower and much straighter than the tails in our simulations. Thus, additional physics like a viscous ICM, the influence of cooling and tidal effects may be needed to explain the details of the observations. We discuss the hydrodynamical drag as a heat source for the ICM but conclude that it is not likely to play an important role, especially not in stopping cooling flows.
We present the first 3D hydrodynamical simulations of ram pressure stripping of a disc galaxy orbiting in a galaxy cluster. Along the orbit, the ram pressure that this galaxy experiences varies with time. In this paper, we focus on the evolution of t
We use 3-dimensional SPH/N-BODY simulations to study ram pressure stripping of gas from spiral galaxies orbiting in clusters. We find that the analytic expectation of Gunn & Gott (1972) relating the gravitational restoring force provided by the disk
Numerous examples of ram pressure stripping in galaxy clusters are present in literature; however, substantially less work has been focused on ram pressure stripping in lower mass groups. In this work we use the LOFAR Two-metre Sky Survey (LoTSS) to
While galaxies move through the intracluster medium of their host cluster, they experience a ram pressure which removes at least a significant part of their interstellar medium. This ram pressure stripping appears to be especially important for spira
We investigate the effects of magnetic fields and turbulence on ram pressure stripping in elliptical galaxies using ideal magnetohydrodynamics simulations. We consider weakly-magnetised interstellar medium (ISM) characterised by subsonic turbulence,