ترغب بنشر مسار تعليمي؟ اضغط هنا

Microwave excitations associated with a wavy angular dependence of the spin transfer torque : model and experiments

145   0   0.0 ( 0 )
 نشر من قبل Julie Grollier
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The spin transfer torque (STT) can lead to steady precession of magnetization without any external applied field in magnetic spin valve where the magnetic layer have very different spin diffusion length. This effect is associated with an unusual angular dependence of the STT, called wavy (WAD-STT), predicted in the frame of diffusive models of spin transfer. In this article, we present a complete experimental characterization of the magnetization dynamics in the presence of a WAD-STT. The results are compared to the prediction of the magnetization dynamics obtained by single domain magnetic simulations (macrospin approximation). The macrospin simulations well reproduced the main static and dynamical experimental features (phase diagram, R(I) curves, dependence of frequency with current and field) and suggest that the dynamical excitations observed experimentally are associated with a large angle out-of-plane precession mode. The present work validates the diffusive models of the spin transfer and underlines the role of the spin accumulation and the spin relaxation effects on the STT.

قيم البحث

اقرأ أيضاً

193 - O. Boulle , V. Cros , J. Grollier 2007
The generation of oscillations in the microwave frequency range is one of the most important applications expected from spintronics devices exploiting the spin transfer phenomenon. We report transport and microwave power measurements on specially des igned nanopillars for which a non-standard angular dependence of the spin transfer torque (wavy variation) is predicted by theoretical models. We observe a new kind of current-induced dynamics that is characterized by large angle precessions in the absence of any applied field, as this is also predicted by simulation with such a wavy angular dependence of the torque. This type of non-standard nanopillars can represent an interesting way for the implementation of spin transfer oscillators since they are able to generate microwave oscillations without applied magnetic field. We also emphasize the theoretical implications of our results on the angular dependence of the torque.
The temperature dependence of a vortex-based nano-oscillator induced by spin transfer torque (STVO) in magnetic tunnel junctions (MTJ) is considered. We obtain emitted signals with large output power and good signal coherence. Due to the reduced non- linearities compared to the uniform magnetization case, we first observe a linear decrease of linewidth with decreasing temperature. However, this expected behavior no longer applies at lower temperature and a bottom limit of the linewidth is measured.
Arising from the interplay between charge, spin and orbital of electrons, spin-orbit torque (SOT) has attracted immense interest in the past decade. Despite vast progress, the existing quantification methods of SOT still have their respective restric tions on the magnetic anisotropy, the entanglement between SOT effective fields, and the artifacts from the thermal gradient and the planar Hall effect, etc. Thus, accurately characterizing SOT across diverse samples remains as a critical need. In this work, with the aim of removing the afore-mentioned restrictions, thus enabling the universal SOT quantification, we report the characterization of the sign and amplitude of SOT by angular measurements. We first validate the applicability of our angular characterization in a perpendicularly magnetized Pt/Co-Ni heterostructure by showing excellent agreements to the results of conventional quantification methods. Remarkably, the thermoelectric effects, i.e., the anomalous Nernst effect (ANE) arising from the temperature gradient can be self-consistently disentangled and quantified from the field dependence of the angular characterization. The superiority of this angular characterization has been further demonstrated in a Cu/CoTb/Cu sample with large ANE but negligible SOT, and in a Pt/Co-Ni sample with weak perpendicular magnetic anisotropy (PMA), for which the conventional quantification methods are not applicable and even yield fatal error. By providing a comprehensive and versatile way to characterize SOT and thermoelectric effects in diverse heterostructures, our results pave the important foundation for the spin-orbitronic study as well as the interdisciplinary research of thermal spintronic.
The spin transfer torque is a phenomenon in which angular momentum of a spin polarized electrical current entering a ferromagnet is transferred to the magnetization. The effect has opened a new research field of electrically driven magnetization dyna mics in magnetic nanostructures and plays an important role in the development of a new generation of memory devices and tunable oscillators. Optical excitations of magnetic systems by laser pulses have been a separate research field whose aim is to explore magnetization dynamics at short time scales and enable ultrafast spintronic devices. We report the experimental observation of the optical spin transfer torque, predicted theoretically several years ago building the bridge between these two fields of spintronics research. In a pump-and-probe optical experiment we measure coherent spin precession in a (Ga,Mn)As ferromagnetic semiconductor excited by circularly polarized laser pulses. During the pump pulse, the spin angular momentum of photo-carriers generated by the absorbed light is transferred to the collective magnetization of the ferromagnet. We interpret the observed optical spin transfer torque and the magnetization precession it triggers on a quantitative microscopic level. Bringing the spin transfer physics into optics introduces a fundamentally distinct mechanism from the previously reported thermal and non-thermal laser excitations of magnets. Bringing optics into the field of spin transfer torques decreases by several orders of magnitude the timescales at which these phenomena are explored and utilized.
152 - M. Gmitra , J. Barnas 2009
Angular variation of giant magnetoresistance and spin-transfer torque in metallic spin-valve heterostructures is analyzed theoretically in the limit of diffusive transport. It is shown that the spin-transfer torque in asymmetric spin valves can vanis h in non-collinear magnetic configurations, and such a non-standard behavior of the torque is generally associated with a non-monotonic angular dependence of the giant magnetoresistance, with a global minimum at a non-collinear magnetic configuration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا