ﻻ يوجد ملخص باللغة العربية
A spectral index n_s < 0.95 appears to be a generic prediction of racetrack inflation models. Reducing a general racetrack model to a single-field inflation model with a simple potential, we obtain an analytic expression for the spectral index, which explains this result. By considering the limits of validity of the derivation, possible ways to achieve higher values of the spectral index are described, although these require further fine-tuning of the potential.
We present a model of inflation based on a racetrack model without flux stabilization. The initial conditions are set automatically through topological inflation. This ensures that the dilaton is not swept to weak coupling through either thermal effe
Extending our previous work on the robustness of inflation to perturbations in the scalar field, we investigate the effects of perturbations in the transverse traceless part of the extrinsic curvature on the evolution of an inhomogeneous inflaton fie
We study a racetrack model in the presence of the leading alpha-correction in flux compactification in Type IIB string theory, for the purpose of getting conceivable de-Sitter vacua in the large compactified volume approximation. Unlike the Kahler Up
We present a new version of our racetrack inflation scenario which, unlike our original proposal, is based on an explicit compactification of type IIB string theory: the Calabi-Yau manifold P^4_[1,1,1,6,9]. The axion-dilaton and all complex structure
The three-year data from WMAP are in stunning agreement with the simplest possible quadratic potential for chaotic inflation, as well as with new or symmetry-breaking inflation. We investigate the possibilities for incorporating these potentials with