ﻻ يوجد ملخص باللغة العربية
Selective accumulation of B-10 compound in tumour tissue is a fundamental condition for the achievement of BNCT (Boron Neutron Capture Therapy), since the effectiveness of therapy irradiation derives just from neutron capture reaction of B-10. Hence, the determination of the B-10 concentration ratio, between tumour and healthy tissue, and a control of this ratio, during the therapy, are essential to optimise the effectiveness of the BNCT, which it is known to be based on the selective uptake of B-10 compound. In this work, experimental methods are proposed and evaluated for the determination in vivo of B-10 compound in biological samples, in particular based on neutron radiography and gammaray spectroscopy by telescopic system. Measures and Monte Carlo calculations have been performed to investigate the possibility of executing imaging of the 10B distribution, both by radiography with thermal neutrons, using 6LiF/ZnS:Ag scintillator screen and a CCD camera, and by spectroscopy, based on the revelation of gamma-ray reaction products from B-10 and the H. A rebuilding algorithm has been implemented. The present study has been done for the standard case of B-10 uptake, as well as for proposed case in which, to the same carrier, is also synthesized Gd-157, in the amount of is used like a contrast agent in NMRI.
The technique of laser ablation in liquids is applied to produce of Boron-containing nanoparticles from ablation of a Fe$_2$B bulk target enriched in 10B isotope. Laser ablation of the target in liquid isopropanol results in partial disproportionatio
This manuscript provides a response to a recent report by Mazzone et al. available online on arXiv that, in turn, tentatively aims at demonstrating the inefficacy of proton boron capture in hadrotherapy. We clarify that Mazzone et al. do not add any
The use of engineered nanoscale magnetic materials in healthcare and biomedical technologies is rapidly growing. Two examples which have recently attracted significant attention are magnetic particle imaging (MPI) for biological monitoring, and magne
Proton beam therapy can potentially offer improved treatment for cancers of the head and neck and in paediatric patients. There has been a sharp uptake of proton beam therapy in recent years as improved delivery techniques and patient benefits are ob
The $^{10}$B isotope has been almost exclusively used in the neutron-capture radiation therapy (NCT) of cancer for decades. We have identified two other nuclides suitable for the radiotherapy, which have ca.10 times larger cross section of absorption