ترغب بنشر مسار تعليمي؟ اضغط هنا

Signatures of Granulation in the Spectra of K-Dwarfs

216   0   0.0 ( 0 )
 نشر من قبل Ivan Ramirez
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Very high resolution (R>150,000) spectra of a small sample of nearby K-dwarfs have been acquired to measure the line asymmetries and central wavelength shifts caused by convective motions present in stellar photospheres. This phenomenon of granulation is modeled by 3D hydrodynamical simulations but they need to be confronted with accurate observations to test their realism before they are used in stellar abundance studies. We find that the line profiles computed with a 3D model agree reasonably well with the observations. The line bisectors and central wavelength shifts on K-dwarf spectra have a maximum amplitude of only about 200 m/s and we have been able to resolve these granulation effects with a very careful observing strategy. By computing a number of iron lines with 1D and 3D models (assuming local thermodynamic equilibrium), we find that the impact of 3D-LTE effects on classical iron abundance determinations is negligible.

قيم البحث

اقرأ أيضاً

Very high resolution (R~160,000-210,000), high signal-to-noise ratio (S/N>300) spectra of nine bright K-dwarfs were obtained with the 2dcoude spectrograph on the 2.7m Telescope at McDonald Observatory to determine wavelength shifts and asymmetries of Fe I lines. The observed shapes and positions of Fe I lines reveal asymmetries and wavelength shifts that indicate the presence of granulation. In particular, line bisectors show characteristic C-shapes while line core wavelengths are blueshifted by an amount that increases with decreasing equivalent width (EW). On average, Fe I line bisectors have a span that ranges from nearly 0 for the weakest lines (residual core flux > 0.7) to about 75 m/s for the strongest lines (residual core flux ~ 0.3) while wavelength shifts range from about -150 m/s in the weakest (EW ~ 10 mA) lines to 0 in the strongest (EW > 100 mA) features. A more detailed inspection of the bisectors and wavelength shifts reveals star-to-star differences that are likely associated with differences in stellar parameters, projected rotational velocity, and stellar activity. For the inactive, slow projected rotational velocity stars, we detect, unequivocally, a plateau in the line-shifts at large EW values (EW > 100 mA), a behavior that had been identified before only in the solar spectrum. The detection of this plateau allows us to determine the zero point of the convective blueshifts, which is useful to determine absolute radial velocities. Thus, we are able to measure such velocities with a mean uncertainty of about 60 m/s.
Transmission spectra of exoplanetary atmospheres have been used to infer the presence of clouds/hazes. Such inferences are typically based on spectral slopes in the optical deviant from gaseous Rayleigh scattering or low-amplitude spectral features i n the infrared. We investigate three observable metrics that could allow constraints on cloud properties from transmission spectra, namely, the optical slope, the uniformity of this slope, and condensate features in the infrared. We derive these metrics using model transmission spectra considering Mie extinction from a wide range of condensate species, particle sizes, and scale heights. Firstly, we investigate possible degeneracies among the cloud properties for an observed slope. We find, for example, that spectra with very steep optical slopes suggest sulphide clouds (e.g. MnS, ZnS, Na$_2$S) in the atmospheres. Secondly, (non)uniformities in optical slopes provide additional constraints on cloud properties, e.g., MnS, ZnS, TiO$_2$, and Fe$_2$O$_3$ have significantly non-uniform slopes. Thirdly, infrared spectra provide an additional powerful probe into cloud properties, with SiO$_2$, Fe$_2$O$_3$, Mg$_2$SiO$_4$, and MgSiO$_3$ bearing strong infrared features observable with the James Webb Space Telescope. We investigate observed spectra of eight hot Jupiters and discuss their implications. In particular, no single or composite condensate species considered here conforms to the steep and non-uniform optical slope observed for HD 189733b. Our work highlights the importance of the three above metrics to investigate cloud properties in exoplanetary atmospheres using high-precision transmission spectra and detailed cloud models. We make our Mie scattering data for condensates publicly available to the community.
We study how multiple charge excitations appear in the resonant inelastic x-ray scattering (RIXS) spectra of metals. The single excitations in the problem are the plasmons and electron-hole pairs, and multi-excitation processes are usually neglected. However, at small momentum transfer the multi-excitation contributions may dominate the signal and one needs to understand how to interpret the data. In particular, we demonstrate how to decode the total multi-excitation intensity and extract the plasmon dispersion. While our calculations are based on the random phase approximation, which does not allow to obtain quantitatively precise results in the entire region of parameters, we expect them to capture semi-qualitatively all features expected for charged Fermi-liquid states, including universal and singular properties of the RIXS spectra.
We have analysed a sample of 23 hot DAs to better understand the source of the circumstellar features reported in previous work. Unambiguous detections of circumstellar material are again made at eight stars. The velocities of the circumstellar mater ial at three of the white dwarfs are coincident with the radial velocities of ISM along the sight line to the stars, suggesting that the objects may be ionising the ISM in their locality. In three further cases, the circumstellar velocities are close to the ISM velocities, indicating that these objects are either ionising the ISM, or evaporated planetesimals/material in a circumstellar disc. The circumstellar velocity at WD 1614-084 lies far from the ISM velocities, indicating either the ionisation of an undetected ISM component or circumstellar material. The material seen at WD 0232+035 can be attributed to the photoionisation of material lost from its M dwarf companion. The measured column densities of the circumstellar material lie within the ionised ISM column density ranges predicted to exist in hot DA Stromgren spheres.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا