ﻻ يوجد ملخص باللغة العربية
We give a new mathematically rigorous proof for the fact that, when $S$ is a dense subset of $[0,2pi)$, the rotated quadrature operators $Q_theta$, $thetain S$, of a single mode electromagnetic field constitute an informationally complete set of observables.
A covariant phase space observable is uniquely characterized by a positive operator of trace one and, in turn, by the Fourier-Weyl transform of this operator. We study three properties of such observables, and characterize them in terms of the zero s
In this paper we investigate the coupling properties of pairs of quadrature observables, showing that, apart from the Weyl relation, they share the same coupling properties as the position-momentum pair. In particular, they are complementary. We dete
It is well known that the resolution method (for propositional logic) is complete. However, completeness proofs found in the literature use an argument by contradiction showing that if a set of clauses is unsatisfiable, then it must have a resolution
In present work we study informational measures for the problem of interference of quantum particles. We demonstrate that diffraction picture in the far field, which is given by probability density of particle momentum distribution, represents a mixt
As an application of the simultaneous and continuous measurement of noncommutative observables formulated in our previous paper [C. Jiang and G. Watanabe, Phys. Rev. A 102, 062216 (2020)], we propose a scheme to generate the pure ideal quadrature squ