ترغب بنشر مسار تعليمي؟ اضغط هنا

The inner radius of T Tauri disks estimated from near-infrared interferometry: the importance of scattered light

28   0   0.0 ( 0 )
 نشر من قبل Christophe Pinte
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For young Herbig Ae/Be stars, near-infrared interferometric measurements have revealed a correlation between the luminosity of the central object and the position of the disk inner rim. This correlation breaks down for the cooler T Tauri stars, a fact often interpreted in terms of disks with larger inner radii. In most cases, the conversion between the observed interferometric visibility and the calculated disk inner radius was done with a crude disk emission model. Here, we examine how the use of models that neglect scattered light can lead to an overestimation of the disk sizes. To do so, synthetic disk images (and visibilities) are calculated with a full treatment of the radiative transfer. The relative contributions of thermal emission and scattered light are compared. We find that the latter can not be neglected for cool stars. For further comparison, the model visibilities are also converted into inner disk radii using the same simple disk models as found in the literature. We find that reliable inner radii can only be estimated for Herbig Ae/Be stars with these models. However, they lead to a systematic overestimation of the disk size, by a factor of 2 to 3, for T Tauri stars. We suggest that including scattered light in the models is a simple (and sufficient) explanation of the current interferometric measurements of T Tauri stars.

قيم البحث

اقرأ أيضاً

We present high angular resolution observations with the Keck Interferometer, high dispersion spectroscopic observations with Keck/NIRSPEC, and near-IR photometric observations from PAIRITEL of a sample of 11 solar-type T Tauri stars in 9 systems. We use these observations to probe the circumstellar material within 1 AU of these young stars, measuring the circumstellar-to-stellar flux ratios and angular size scales of the 2.2 micron emission. Our sample spans a range of stellar luminosities and mass accretion rates, allowing investigation of potential correlations between inner disk properties and stellar or accretion properties. We suggest that the mechanism by which the dusty inner disk is truncated may depend on the accretion rate of the source; in objects with low accretion rates, the stellar magnetospheres may truncate the disks, while sublimation may truncate dusty disks around sources with higher accretion rates. We have also included in our sample objects that are known to be highly variable (based on previous photometric and spectroscopic observations), and for several sources, we obtained multiple epochs of spectroscopic and interferometric data, supplemented by near-IR photometric monitoring, to search for inner disk variability. While time-variable veilings and accretion rates are observed in some sources, no strong evidence for inner disk pulsation is found.
Mid-infrared molecular line emission detected with the Spitzer Space Telescope is often interpreted using slab models. However, we need to understand the mid-infrared line emission in 2D disk models, such that we gain information about from where the lines are being emitted and under which conditions, such that we gain information about number densities, temperatures, and optical depths in both the radial and vertical directions. In this paper, we introduce a series of 2D thermochemical models of a prototypical T Tauri protoplanetary disk, in order to examine how sensitive the line-emitting regions are to changes in the UV and X-ray fluxes, the disk flaring angle, dust settling, and the dust-to-gas ratio. These all affect the heating of the inner disk, and thus can affect the mid-infrared spectral lines. Using the ProDiMo and FLiTs codes, we produce a series of 2D thermochemical disk models. We find that there is often a significant difference between the gas and dust temperatures in the line emitting regions, and we illustrate that the size of the line emitting regions is relatively robust against changes in the stellar and disk parameters (namely, the UV and X-ray fluxes, the flaring angle, and dust settling). These results demonstrate the potential for localized variations in the line-emitting region to greatly affect the resulting spectra and line fluxes, and the necessity of allowing for such variations in our models.
We present time dependent chemical models for a dense and warm O-rich gas exposed to a strong far ultraviolet field aiming at exploring the formation of simple organic molecules in the inner regions of protoplanetary disks around T Tauri stars. An up -to-date chemical network is used to compute the evolution of molecular abundances. Reactions of H2 with small organic radicals such as C2 and C2H, which are not included in current astrochemical databases, overcome their moderate activation energies at warm temperatures and become very important for the gas phase synthesis of C-bearing molecules. The photodissociation of CO and release of C triggers the formation of simple organic species such as C2H2, HCN, and CH4. In timescales between 1 and 10,000 years, depending on the density and FUV field, a steady state is reached in the model in which molecules are continuously photodissociated but also formed, mainly through gas phase chemical reactions involving H2. The application of the model to the upper layers of inner protoplanetary disks predicts large gas phase abundances of C2H2 and HCN. The implied vertical column densities are as large as several 10^(16) cm^(-2) in the very inner disk (< 1 AU), in good agreement with the recent infrared observations of warm C2H2 and HCN in the inner regions of IRS 46 and GV Tau disks. We also compare our results with previous chemical models studying the photoprocessing in the outer disk regions, and find that the gas phase chemical composition in the upper layers of the inner terrestrial zone (a few AU) is predicted to be substantially different from that in the upper layers of the outer disk (> 50 AU).
T Tauri has long been the prototypical young pre-main-sequence star. However, it has now been decomposed into a triple system with a complex disk and outflow geometry. We aim to measure the brightness of all three components of the T Tauri system (T Tau N, T Tau Sa, T Tau Sb) in the mid-infrared in order to obtain photometry around the $sim 9.7~mu m$ silicate feature. This allows us to study their variability and to investigate the distribution of dust and the geometry of circumstellar and circumbinary disks in this complex system. We observe T Tauri with the VLT/VISIR-NEAR instrument. With kernel phase interferometry post-processing of the data, and using the astrometric positions of all three components from VLT/SPHERE, we measure the three components individual brightnesses (including the southern binary at an angular separation down to $sim 0.2~lambda/D$) and obtain their photometry. In order to validate our methods, we simulate and recover mock data of the T Tauri system using the observed reference point-spread function of HD 27639. We find that T Tau N is rather stable and shows weak silicate emission, while T Tau Sa is highly variable and shows prominent silicate absorption. T Tau Sb became significantly fainter compared to data from 2004 and 2006, suggesting increased extinction by dust. The precision of our photometry is limited by systematic errors, which is consistent with previous studies using kernel phase interferometry. Our results confirm the complex scenario of misaligned disks in the T Tauri system that had been observed previously, and they are in agreement with the recently observed dimming of T Tau Sb in the near-infrared. Our mid-infrared photometry supports the interpretation that T Tau Sb has moved behind the dense region of the Sa-Sb circumbinary disk on its tight orbit around Sa, therefore suffering increased extinction.
84 - E. Furlan 2003
With high-angular-resolution, near-infrared observations of the young stellar object T Tauri at the end of 2002, we show that, contrary to previous reports, none of the three infrared components of T Tau coincide with the compact radio source that ha s apparently been ejected recently from the system (Loinard, Rodriguez, and Rodriguez 2003). The compact radio source and one of the three infrared objects, T Tau Sb, have distinct paths that depart from orbital or uniform motion between 1997 and 2000, perhaps indicating that their interaction led to the ejection of the radio source. The path that T Tau Sb took between 1997 and 2003 may indicate that this star is still bound to the presumably more massive southern component, T Tau Sa. The radio source is absent from our near-infrared images and must therefore be fainter than K = 10.2 (if located within 100 mas of T Tau Sb, as the radio data would imply), still consistent with an identity as a low-mass star or substellar object.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا