ترغب بنشر مسار تعليمي؟ اضغط هنا

Beam spin asymmetry in deep and exclusive pi0 electroproduction

121   0   0.0 ( 0 )
 نشر من قبل Rita De Masi
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The beam spin asymmetry (BSA) in the exclusive reaction ep->ep pi0 was measured with the CEBAF 5.77 GeV polarized electron beam and Large Acceptance Spectrometer(CLAS). The xB, Q2, t and phi dependences of the pi0 BSA are presented in the deep inelastic regime. The asymmetries are fitted with a sin(phi) function and their amplitudes are extracted. Overall, they are of the order of 0.04 - 0.11 and roughly independent of t. This is the signature of a non-zero longitudinal-transverse interference. The implications concerning the applicability of a formalism based on generalized parton distributions, as well as the extension of a Regge formalism at high photon virtualities, are discussed.



قيم البحث

اقرأ أيضاً

Hard exclusive electroproduction of $omega$ mesons is studied with the HERMES spectrometer at the DESY laboratory by scattering 27.6 GeV positron and electron beams off a transversely polarized hydrogen target. The amplitudes of five azimuthal modula tions of the single-spin asymmetry of the cross section with respect to the transverse proton polarization are measured. They are determined in the entire kinematic region as well as for two bins in photon virtuality and momentum transfer to the nucleon. Also, a separation of asymmetry amplitudes into longitudinal and transverse components is done. These results are compared to a phenomenological model that includes the pion pole contribution. Within this model, the data favor a positive $piomega$ transition form factor.
A first measurement of the longitudinal beam spin asymmetry ALU in the semi-inclusive electroproduction of pairs of charged pions is reported. ALU is a higher-twist observable and offers the cleanest access to the nucleon twist-3 parton distribution function e(x). Data have been collected in the Hall-B at Jefferson Lab by impinging a 5.498 GeV electron beam on a liquid-hydrogen target, and reconstructing the scattered electron and the pion pair with the CLAS detector. One-dimensional projections of the sin(phiR) moments of ALU are extracted for the kinematic variables of interest in the valence quark region. The understanding of di-hadron production is essential for the interpretation of observables in single hadron production in semi-inclusive DIS, and pioneering measurements of single spin asymmetries in di-hadron production open a new avenue in studies of QCD dynamics.
Exclusive electroproduction of $omega$ mesons on unpolarized hydrogen and deuterium targets is studied in the kinematic region of Q$^2$>1.0 GeV$^2$, 3.0 GeV < W < 6.3 GeV, and -t< 0.2 GeV$^2$. Results on the angular distribution of the $omega$ meson, including its decay products, are presented. The data were accumulated with the HERMES forward spectrometer during the 1996-2007 running period using the 27.6 GeV longitudinally polarized electron or positron beam of HERA. The determination of the virtual-photon longitudinal-to-transverse cross-section ratio reveals that a considerable part of the cross section arises from transversely polarized photons. Spin density matrix elements are presented in projections of Q$^2$ or -t. Violation of s-channel helicity conservation is observed for some of these elements. A sizable contribution from unnatural-parity-exchange amplitudes is found and the phase shift between those amplitudes that describe transverse $omega$ production by longitudinal and transverse virtual photons, $gamma^{*}_{L} to omega_{T}$ and $gamma^{*}_{T} to omega_{T}$, is determined for the first time. A hierarchy of helicity amplitudes is established, which mainly means that the unnatural-parity-exchange amplitude describing the $gamma^*_T to omega_T$ transition dominates over the two natural-parity-exchange amplitudes describing the $gamma^*_L to omega_L$ and $gamma^*_T to omega_T$ transitions, with the latter two being of similar magnitude. Good agreement is found between the HERMES proton data and results of a pQCD-inspired phenomenological model that includes pion-pole contributions, which are of unnatural parity.
Beam-target double spin asymmetries and target single-spin asymmetries in exclusive $pi^+$ and $pi^-$ electroproduction were obtained from scattering of 1.6 to 5.7 GeV longitudinally polarized electrons from longitudinally polarized protons (for $pi^ +$) and deuterons (for $pi^-$) using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. The kinematic range covered is $1.1<W<2.6$ GeV and $0.05<Q^2<5$ GeV$^2$, with good anglular coverage in the forward hemisphere. The asymmetry results were divided into approximately 40,000 kinematic bins for $pi^+$ from free protons and 15,000 bins for $pi^-$ production from bound nucleons in the deuteron. The present results are found to be in reasonable agreement with fits to previous world data for $W<1.7$ GeV and $Q^2<0.5$ GeV$^2$, with discrepancies increasing at higher values of $Q^2$, especially for $W>1.5$ GeV. Very large target-spin asymmetries are observed for $W>1.6$ GeV. When combined with cross section measurements, the present results will provide powerful constraints on nucleon resonance amplitudes at moderate and large values of $Q^2$, for resonances with masses as high as 2.3 GeV.
110 - P. Kroll 2009
In this talk various spin effects in hard exclusive electroproduction of mesons are briefly reviewed. The data are discussed in the light of recent theoretical calculations within the frame work of the handbag approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا