ترغب بنشر مسار تعليمي؟ اضغط هنا

Systematic changes of the electronic structure of the diluted ferromagnetic oxide Li-doped Ni$_{1-x}$Fe$_x$O with hole doping

267   0   0.0 ( 0 )
 نشر من قبل Masaki Kobayashi
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The electronic structure of Li-doped Ni$_{1-x}$Fe$_x$O has been investigated using photoemission spectroscopy (PES) and x-ray absorption spectroscopy (XAS). The Ni $2p$ core-level PES and XAS spectra were not changed by Li doping. In contrast, the Fe$^{3+}$ intensity increased with Li doping relative to the Fe$^{2+}$ intensity. However, the increase of Fe$^{3+}$ is only $sim 5%$ of the doped Li content, suggesting that most of the doped holes enter the O $2p$ and/or the charge-transferred configuration Ni $3d^8underline{L}$. The Fe 3d partial density of states and the host valence-band emission near valence-band maximum increased with Li content, consistent with the increase of electrical conductivity. Based on these findings, percolation of bound magnetic polarons is proposed as an origin of the ferromagnetic behavior.



قيم البحث

اقرأ أيضاً

The electronic structure of the Cr ions in the diluted ferromagnetic semiconductor Zn$_{1-x}$Cr$_x$Te ($x=0.03$ and 0.15) thin films has been investigated using x-ray magnetic circular dichroism (XMCD) and photoemission spectroscopy (PES). Magnetic-f ield ($H$) and temperature ($T$) dependences of the Cr $2p$ XMCD spectra well correspond to the magnetization measured by a SQUID magnetometer. The line shape of the Cr $2p$ XMCD spectra is independent of $H$, $T$, and $x$, indicating that the ferromagnetism is originated from the same electronic states of the Cr ion. Cluster-model analysis indicates that although there are two or more kinds of Cr ions in the Zn$_{1-x}$Cr$_x$Te samples, the ferromagnetic XMCD signal is originated from Cr ions substituted for the Zn site. The Cr 3d partial density of states extracted using Cr $2p to 3d$ resonant PES shows a broad feature near the top of the valence band, suggesting strong $s$,$p$-$d$ hybridization. No density of states is detected at the Fermi level, consistent with their insulating behavior. Based on these findings, we conclude that double exchange mechanism cannot explain the ferromagnetism in Zn$_{1-x}$Cr$_{x}$Te.
We have studied the electronic structure of Zn$_{0.9}$Fe$_{0.1}$O nano-particles, which have been reported to show ferromagnetism at room temperature, by x-ray photoemission spectroscopy (XPS), resonant photoemission spectroscopy (RPES), x-ray absorp tion spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD). From the experimental and cluster-model calculation results, we find that Fe atoms are predominantly in the Fe$^{3+}$ ionic state with mixture of a small amount of Fe$^{2+}$ and that Fe$^{3+}$ ions are dominant in the surface region of the nano-particles. It is shown that the room temperature ferromagnetism in the Zn$_{0.9}$Fe$_{0.1}$O nano-particles is primarily originated from the antiferromagnetic coupling between unequal amounts of Fe$^{3+}$ ions occupying two sets of nonequivalent positions in the region of the XMCD probing depth of $sim$ 2-3 nm.
We report measurements of the London penetration depth [$Deltalambda(T)$] of the recently discovered iron-based superconductor (Li$_{1-x}$Fe$_x$)OHFeSe, in order to characterize the nature of the superconducting gap structure. At low temperatures, $D eltalambda(T)$ displays nearly temperature independent behavior, indicating a fully open superconducting gap. We also analyze the superfluid density $rho_s(T)$ which cannot be well accounted for by a single-gap isotropic $s$-wave model but are consistent with either two-gaps, a model for the orbital selective $stimestau_3$ state or anisotropic $s$-wave superconductivity.
131 - A. Jesche , L. Ke , J. L. Jacobs 2015
Substantial amounts of the transition metals Mn, Fe, Co, and Ni can be substituted for Li in single crystalline Li$_2$(Li$_{1-x}T_x$)N. Isothermal and temperature-dependent magnetization measurements reveal local magnetic moments with magnitudes sign ificantly exceeding the spin-only value. The additional contributions stem from unquenched orbital moments that lead to rare-earth-like behavior of the magnetic properties. Accordingly, extremely large magnetic anisotropies have been found. Most notably, the magnetic anisotropy alternates as easy-plane $rightarrow$ easy-axis $rightarrow$ easy-plane $rightarrow$ easy-axis when progressing from $T$ = Mn $rightarrow$ Fe $rightarrow$ Co $rightarrow$ Ni. This behavior can be understood based on a perturbation approach in an analytical, single-ion model. The calculated magnetic anisotropies show a surprisingly good agreement with the experiment and capture the basic features observed for the different transition metals.
480 - Z. Deng , K. Zhao , B.Gu 2013
We report the discovery of a new diluted magnetic semiconductor, Li(Zn,Mn)P, in which charge and spin are introduced independently via lithium off-stoichiometry and the isovalent substitution of Mn2+ for Zn2+, respectively. Isostructural to (Ga,Mn)As , Li(Zn,Mn)P was found to be a p-type ferromagnetic semiconductor with excess Lithium providing charge doping. First principles calculations indicate that excess Li is favored to partially occupy the Zn site, leading to hole doping. Ferromagnetism is mediated in semiconducting samples of relative low mobile carriers with a small coercive force, indicating an easy spin flip.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا