ترغب بنشر مسار تعليمي؟ اضغط هنا

The Properties of Dense Molecular Gas in the Milky Way and Galaxies

196   0   0.0 ( 0 )
 نشر من قبل Yancy L. Shirley
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Yancy L. Shirley




اسأل ChatGPT حول البحث

We review the evidence for a constant star formation rate per unit mass in dense molecular gas in the Milky Way and the extragalactic correlations of L_IR with L from observations of dense molecular gas. We discuss the connection between the constant SFR/M interpretation in dense gas and the global Schmidt-Kennicutt star formation law.



قيم البحث

اقرأ أيضاً

The H2O Southern Galactic Plane Survey (HOPS) has mapped 100 square degrees of the Galactic plane for water masers and thermal molecular line emission using the 22-m Mopra telescope. We describe the automated spectral-line fitting pipelines used to d etermine the properties of emission detected in HOPS datacubes, and use these to derive the physical and kinematic properties of gas in the survey. A combination of the angular resolution, sensitivity, velocity resolution and high critical density of lines targeted make the HOPS data cubes ideally suited to finding precursor clouds to the most massive and dense stellar clusters in the Galaxy. We compile a list of the most massive HOPS ammonia regions and investigate whether any may be young massive cluster progenitor gas clouds. HOPS is also ideally suited to trace the flows of dense gas in the Galactic Centre. We find the kinematic structure of gas within the inner 500pc of the Galaxy is consistent with recent predictions for the dynamical evolution of gas flows in the centre of the Milky Way. We confirm a recent finding that the dense gas in the inner 100pc has an oscillatory kinematic structure with characteristic length scale of ~20pc, and also identify similar oscillatory kinematic structure in the gas at radii larger than 100pc. Finally, we make all of the above fits and the remaining HOPS data cubes across the 100 square degrees of the survey available to the community.
191 - Jin Koda 2016
We analyze radial and azimuthal variations of the phase balance between the molecular and atomic ISM in the Milky Way. In particular, the azimuthal variations -- between spiral arm and interarm regions -- are analyzed without any explicit definition of spiral arm locations. We show that the molecular gas mass fraction, i.e., fmol=H2/ (HI+H2) in mass, varies predominantly in the radial direction: starting from ~100% at the center, remaining ~>50% (~>60%) to R~6kpc, and decreasing to ~10-20% (~50%) at R=8.5 kpc when averaged over the whole disk thickness (in the mid plane). Azimuthal, arm-interarm variations are secondary: only ~20%, in the globally molecule-dominated inner MW, but becoming larger, ~40-50%, in the atom-dominated outskirts. This suggests that in the inner MW, the gas stays highly molecular (fmol>50%) as it goes from an interarm region, into a spiral arm, and back into the next interarm region. Stellar feedback does not dissociate molecules much, and the coagulation and fragmentation of molecular clouds dominate the evolution of the ISM at these radii. The trend differs in the outskirts, where the gas phase is globally atomic (fmol<50%). The HI and H2 phases cycle through spiral arm passage there. These different regimes of ISM evolution are also seen in external galaxies (e.g., LMC, M33, and M51). We explain the radial gradient of fmol by a simple flow continuity model. The effects of spiral arms on this analysis are illustrated in Appendix.
We present new ~1 resolution data of the dense molecular gas in the central 50-100 pc of four nearby Seyfert galaxies. PdBI observations of HCN and, in 2 of the 4 sources, simultaneously HCO+ allow us to carefully constrain the dynamical state of the dense gas surrounding the AGN. Analysis of the kinematics shows large line widths of 100-200 km/s FWHM that can only partially arise from beam smearing of the velocity gradient. The observed morphological and kinematic parameters (dimensions, major axis position angle, red and blue channel separation, and integrated line width) are well reproduced by a thick disk, where the emitting dense gas has a large intrinsic dispersion (20-40 km/s), implying that it exists at significant scale heights (25-30% of the disk radius). To put the observed kinematics in the context of the starburst and AGN evolution, we estimate the Toomre Q parameter. We find this is always greater than the critical value, i.e. Q is above the limit such that the gas is stable against rapid star formation. This is supported by the lack of direct evidence, in these 4 Seyfert galaxies, for on-going star formation close around the AGN. Instead, any current star formation tends to be located in a circumnuclear ring. We conclude that the physical conditions are indeed not suited to star formation within the central ~100 pc.
We present the 3 mm wavelength spectra of 28 local galaxy merger remnants obtained with the Large Millimeter Telescope. Fifteen molecular lines from 13 different molecular species and isotopologues were identified, and 21 out of 28 sources were detec ted in one or more molecular lines. On average, the line ratios of the dense gas tracers, such as HCN (1-0) and HCO$^{+}$(1-0), to $^{13}$CO (1-0) are 3-4 times higher in ultra/luminous infrared galaxies (U/LIRGs) than in non-LIRGs in our sample. These high line ratios could be explained by the deficiency of $^{13}$CO and high dense gas fractions suggested by high HCN (1-0)/$^{12}$CO (1-0) ratios. We calculate the IR-to-HCN (1-0) luminosity ratio as a proxy of the dense gas star formation efficiency. There is no correlation between the IR/HCN ratio and the IR luminosity, while the IR/HCN ratio varies from source to source (1.1-6.5) $times 10^{3}$ $L_{odot}$/(K km s$^{-1}$ pc$^{2}$). Compared with the control sample, we find that the average IR/HCN ratio of the merger remnants is higher by a factor of 2-3 than those of the early/mid-stage mergers and non-merging LIRGs, and it is comparable to that of the late-stage mergers. The IR-to-$^{12}$CO (1-0) ratios show a similar trend to the IR/HCN ratios. These results suggest that star formation efficiency is enhanced by the merging process and maintained at high levels even after the final coalescence. The dynamical interactions and mergers could change the star formation mode and continue to impact the star formation properties of the gas in the post-merger phase.
168 - X. H. Sun , W. Reich 2012
(Abridged) We study the polarisation properties, magnetic field strength, and synchrotron emission scale-height of Milky-Way-like galaxies in comparison with other spiral galaxies. We use our 3D-emission model of the Milky Way Galaxy for viewing the Milky Way from outside at various inclinations as spiral galaxies are observed. When seen edge-on the synchrotron emission from the Milky Way has an exponential scale-height of about 0.74 kpc, which is much smaller than the values obtained from previous models. We find that current analysis methods overestimate the scale-height of synchrotron emission of galaxies by about 10% at an inclination of 80 degree and about 40% at an inclination of 70 degree because of contamination from the disk. The observed RMs for face-on galaxies derived from high-frequency polarisation measurements approximate to the Faraday depths (FDs) when scaled by a factor of two. For edge-on galaxies, the observed RMs are indicative of the orientation of the large-scale magnetic field, but are not well related with the FDs. Assuming energy equipartition between the magnetic field and particles for the Milky Way results in an average magnetic-field strength, which is about two times larger than the intrinsic value for a K factor of 100. The number distribution of the integrated polarisation percentages of a large sample of unresolved Milky-Way-like galaxies peaks at about 4.2% at 4.8 GHz and at about 0.8% at 1.4GHz. Integrated polarisation angles rotated by 90 degree align very well with the position angles of the major axes, implying that unresolved galaxies do not have intrinsic RMs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا