ترغب بنشر مسار تعليمي؟ اضغط هنا

Planets in the Galactic Bulge: Results from the SWEEPS Project

58   0   0.0 ( 0 )
 نشر من قبل Kailash C. Sahu
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The exoplanets discovered so far have been mostly around relatively nearby and bright stars. As a result, the host stars are mostly (i) in the Galactic disk, (ii) relatively massive, and (iii) relatively metal rich. The aim of the SWEEPS project is to extend our knowledge to stars which (i) are in a different part of the Galaxy, (ii) have lower masses, and (iii) have a large range of metallicities. To achieve this goal, we used the Hubble Space Telescope to search for transiting planets around F, G, K, and M dwarfs in the Galactic bulge. We photometrically monitored 180,000 stars in a dense bulge field continuously for 7 days. We discovered 16 candidate transiting extrasolar planets with periods of 0.6 to 4.2 days, including a new class of ultra-short period planets (USPPs) with P < 1.2 days. Radial-velocity observations of the two brightest candidates support their planetary nature. These results suggest that planets are as abundant in the Galactic bulge as they are in the solar neighborhood, and they are equally abundant around low-mass stars (within a factor 2). The planet frequency increases with metallicity even for the stars in the Galactic bulge. All the USPP hosts are low-mass stars, suggesting either that close-in planets around higher-mass stars are irradiatively evaporated, or that the planets can migrate to close-in orbits only around such old and low-mass stars.


قيم البحث

اقرأ أيضاً

We summarize the contribution of the HATNet project to extrasolar planet science, highlighting published planets (HAT-P-1b through HAT-P-26b). We also briefly discuss the operations, data analysis, candidate selection and confirmation procedures, and we summarize what HATNet provides to the exoplanet community with each discovery.
Our understanding of the chemical evolution of the Galactic bulge requires the determination of abundances in large samples of giant stars and planetary nebulae (PNe). We discuss PNe abundances in the Galactic bulge and compare these results with tho se presented in the literature for giant stars. We present the largest, high-quality data-set available for PNe in the direction of the Galactic bulge (inner-disk/bulge). For comparison purposes, we also consider a sample of PNe in the Large Magellanic Cloud (LMC). We derive the element abundances in a consistent way for all the PNe studied. By comparing the abundances for the bulge, inner-disk, and LMC, we identify elements that have not been modified during the evolution of the PN progenitor and can be used to trace the bulge chemical enrichment history. We then compare the PN abundances with abundances of bulge field giant. At the metallicity of the bulge, we find that the abundances of O and Ne are close to the values for the interstellar medium at the time of the PN progenitor formation, and hence these elements can be used as tracers of the bulge chemical evolution, in the same way as S and Ar, which are not expected to be affected by nucleosynthetic processes during the evolution of the PN progenitors. The PN oxygen abundance distribution is shifted to lower values by 0.3 dex with respect to the distribution given by giants. A similar shift appears to occur for Ne and S. We discuss possible reasons for this PNe-giant discrepancy and conclude that this is probably due to systematic errors in the abundance derivations in either giants or PNe (or both). We issue an important warning concerning the use of absolute abundances in chemical evolution studies.
We present the microlensing optical depth towards the Galactic bulge based on the detection of 99 events found in our Difference Image Analysis (DIA) survey. This analysis encompasses three years of data, covering ~ 17 million stars in ~ 4 deg^2, to a source star baseline magnitude limit of V = 23. The DIA technique improves the quality of photometry in crowded fields, and allows us to detect more microlensing events with faint source stars. We find this method increases the number of detection events by 85% compared with the standard analysis technique. DIA light curves of the events are presented and the microlensing fit parameters are given. The total microlensing optical depth is estimated to be tau_(total)= 2.43^(+0.39/-0.38) x 10^(-6) averaged over 8 fields centered at l=2.68 and b=-3.35. For the bulge component we find tau_(bulge)=3.23^(+0.52/-0.50) x 10^(-6) assuming a 25% stellar contribution from disk sources. These optical depths are in good agreement with the past determinations of the MACHO Alcock et al. (1997) and OGLE Udalski et al. (1994) groups, and are higher than predicted by contemporary Galactic models. We show that our observed event timescale distribution is consistent with the distribution expected from normal mass stars, if we adopt the stellar mass function of Scalo (1986) as our lens mass function. However, we note that as there is still disagreement about the exact form of the stellar mass function, there is uncertainty in this conclusion. Based on our event timescale distribution we find no evidence for the existence of a large population of brown dwarfs in the direction of the Galactic bulge.
We report the detection of 45 candidate microlensing events in fields toward the Galactic bulge. These come from the analysis of 24 fields containing 12.6 million stars observed for 190 days in 1993. Many of these events are of extremely high signal to noise and are remarkable examples of gravitational microlensing. The distribution of peak magnifications is shown to be consistent with the microlensing interpretation of these events. Using a sub-sample of 1.3 million ``Clump Giant stars whose distance and detection efficiency are well known, we find 13 events and estimate the microlensing optical depth toward the Galactic Bulge as $tau_{rm bulge} = 3.9 {+ 1.8 atop - 1.2} times 10^{-6}$ averaged over an area of $sim 12$ square degrees centered at Galactic coordinates $ell = 2.55^circ$ and $b = -3.64^circ$. This is similar to the value reported by the OGLE collaboration, and is marginally higher than current theoretical models for $tau_{rm bulge}$. The optical depth is also seen to increase significantly for decreasing $vert bvert$. These results demonstrate that obtaining large numbers of microlensing events toward the Galactic bulge is feasible, and that the study of such events will have important consequences for the structure of the Galaxy and its dark halo.
The detection of Earth-like planets, exocomets or Kuiper belts show that the different components found in the solar system should also be present in other planetary systems. Trojans are one of these components and can be considered fossils of the fi rst stages in the life of planetary systems. Their detection in extrasolar systems would open a new scientific window to investigate formation and migration processes. In this context, the main goal of the TROY project is to detect exotrojans for the first time and to measure their occurrence rate (eta-Trojan). In this first paper, we describe the goals and methodology of the project. Additionally, we used archival radial velocity data of 46 planetary systems to place upper limits on the mass of possible trojans and investigate the presence of co-orbital planets down to several tens of Earth masses. We used archival radial velocity data of 46 close-in (P<5 days) transiting planets (without detected companions) with information from high-precision radial velocity instruments. We took advantage of the time of mid-transit and secondary eclipses (when available) to constrain the possible presence of additional objects co-orbiting the star along with the planet. This, together with a good phase coverage, breaks the degeneracy between a trojan planet signature and signals coming from additional planets or underestimated eccentricity. We identify nine systems for which the archival data provide 1-sigma evidence for a mass imbalance between L4 and L5. Two of these systems provide 2-sigma detection, but no significant detection is found among our sample. We also report upper limits to the masses at L4/L5 in all studied systems and discuss the results in the context of previous findings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا